Can Language Beat Numerical Regression? Language-Based Multimodal Trajectory Prediction
- URL: http://arxiv.org/abs/2403.18447v1
- Date: Wed, 27 Mar 2024 11:06:44 GMT
- Title: Can Language Beat Numerical Regression? Language-Based Multimodal Trajectory Prediction
- Authors: Inhwan Bae, Junoh Lee, Hae-Gon Jeon,
- Abstract summary: Language models have demonstrated impressive ability in context understanding and generative performance.
We propose LMTraj (Language-based Multimodal Trajectory predictor), which recasts the trajectory prediction task into a sort of question-answering problem.
We show that the language-based model can be a powerful pedestrian trajectory predictor, and outperforms existing numerical-based predictor methods.
- Score: 23.45902601618188
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language models have demonstrated impressive ability in context understanding and generative performance. Inspired by the recent success of language foundation models, in this paper, we propose LMTraj (Language-based Multimodal Trajectory predictor), which recasts the trajectory prediction task into a sort of question-answering problem. Departing from traditional numerical regression models, which treat the trajectory coordinate sequence as continuous signals, we consider them as discrete signals like text prompts. Specially, we first transform an input space for the trajectory coordinate into the natural language space. Here, the entire time-series trajectories of pedestrians are converted into a text prompt, and scene images are described as text information through image captioning. The transformed numerical and image data are then wrapped into the question-answering template for use in a language model. Next, to guide the language model in understanding and reasoning high-level knowledge, such as scene context and social relationships between pedestrians, we introduce an auxiliary multi-task question and answering. We then train a numerical tokenizer with the prompt data. We encourage the tokenizer to separate the integer and decimal parts well, and leverage it to capture correlations between the consecutive numbers in the language model. Lastly, we train the language model using the numerical tokenizer and all of the question-answer prompts. Here, we propose a beam-search-based most-likely prediction and a temperature-based multimodal prediction to implement both deterministic and stochastic inferences. Applying our LMTraj, we show that the language-based model can be a powerful pedestrian trajectory predictor, and outperforms existing numerical-based predictor methods. Code is publicly available at https://github.com/inhwanbae/LMTrajectory .
Related papers
- Understanding and Mitigating Tokenization Bias in Language Models [6.418593476658017]
State-of-the-art language models are autoregressive and operate on subword units known as tokens.
We show that popular encoding schemes induce a sampling bias that cannot be mitigated with more training or data.
We propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data.
arXiv Detail & Related papers (2024-06-24T17:38:02Z) - Unveiling Multilinguality in Transformer Models: Exploring Language
Specificity in Feed-Forward Networks [12.7259425362286]
We investigate how multilingual models might leverage key-value memories.
For autoregressive models trained on two or more languages, do all neurons (across layers) respond equally to all languages?
Our findings reveal that the layers closest to the network's input or output tend to exhibit more language-specific behaviour compared to the layers in the middle.
arXiv Detail & Related papers (2023-10-24T06:45:00Z) - Bidirectional Representations for Low Resource Spoken Language
Understanding [39.208462511430554]
We propose a representation model to encode speech in bidirectional rich encodings.
The approach uses a masked language modelling objective to learn the representations.
We show that the performance of the resulting encodings is better than comparable models on multiple datasets.
arXiv Detail & Related papers (2022-11-24T17:05:16Z) - Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word
Alignment [49.45399359826453]
Cross-lingual language models are typically pretrained with language modeling on multilingual text or parallel sentences.
We introduce denoising word alignment as a new cross-lingual pre-training task.
Experimental results show that our method improves cross-lingual transferability on various datasets.
arXiv Detail & Related papers (2021-06-11T13:36:01Z) - Lattice-BERT: Leveraging Multi-Granularity Representations in Chinese
Pre-trained Language Models [62.41139712595334]
We propose a novel pre-training paradigm for Chinese -- Lattice-BERT.
We construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers.
We show that our model can bring an average increase of 1.5% under the 12-layer setting.
arXiv Detail & Related papers (2021-04-15T02:36:49Z) - Read Like Humans: Autonomous, Bidirectional and Iterative Language
Modeling for Scene Text Recognition [80.446770909975]
Linguistic knowledge is of great benefit to scene text recognition.
How to effectively model linguistic rules in end-to-end deep networks remains a research challenge.
We propose an autonomous, bidirectional and iterative ABINet for scene text recognition.
arXiv Detail & Related papers (2021-03-11T06:47:45Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
We propose a Bayesian generative model for the space of neural parameters.
We infer the posteriors over such latent variables based on data from seen task-language combinations.
Our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods.
arXiv Detail & Related papers (2020-01-30T16:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.