Scalable Lipschitz Estimation for CNNs
- URL: http://arxiv.org/abs/2403.18613v2
- Date: Wed, 7 Aug 2024 09:46:49 GMT
- Title: Scalable Lipschitz Estimation for CNNs
- Authors: Yusuf Sulehman, Tingting Mu,
- Abstract summary: Estimating the Lipschitz constant of deep neural networks is of growing interest.
CNNs underpin much of the recent success in computer vision related applications.
We propose a novel method to accelerate Lipschitz constant estimation for CNNs.
- Score: 3.8125535078871127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the Lipschitz constant of deep neural networks is of growing interest as it is useful for informing on generalisability and adversarial robustness. Convolutional neural networks (CNNs) in particular, underpin much of the recent success in computer vision related applications. However, although existing methods for estimating the Lipschitz constant can be tight, they have limited scalability when applied to CNNs. To tackle this, we propose a novel method to accelerate Lipschitz constant estimation for CNNs. The core idea is to divide a large convolutional block via a joint layer and width-wise partition, into a collection of smaller blocks. We prove an upper-bound on the Lipschitz constant of the larger block in terms of the Lipschitz constants of the smaller blocks. Through varying the partition factor, the resulting method can be adjusted to prioritise either accuracy or scalability and permits parallelisation. We demonstrate an enhanced scalability and comparable accuracy to existing baselines through a range of experiments.
Related papers
- Efficiently Computing Local Lipschitz Constants of Neural Networks via
Bound Propagation [79.13041340708395]
Lipschitz constants are connected to many properties of neural networks, such as robustness, fairness, and generalization.
Existing methods for computing Lipschitz constants either produce relatively loose upper bounds or are limited to small networks.
We develop an efficient framework for computing the $ell_infty$ local Lipschitz constant of a neural network by tightly upper bounding the norm of Clarke Jacobian.
arXiv Detail & Related papers (2022-10-13T22:23:22Z) - Rethinking Lipschitz Neural Networks for Certified L-infinity Robustness [33.72713778392896]
We study certified $ell_infty$ from a novel perspective of representing Boolean functions.
We develop a unified Lipschitz network that generalizes prior works, and design a practical version that can be efficiently trained.
arXiv Detail & Related papers (2022-10-04T17:55:27Z) - Lipschitz Continuity Retained Binary Neural Network [52.17734681659175]
We introduce the Lipschitz continuity as the rigorous criteria to define the model robustness for BNN.
We then propose to retain the Lipschitz continuity as a regularization term to improve the model robustness.
Our experiments prove that our BNN-specific regularization method can effectively strengthen the robustness of BNN.
arXiv Detail & Related papers (2022-07-13T22:55:04Z) - Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural
Networks [77.82638674792292]
Lipschitz constants of neural networks allow for guarantees of robustness in image classification, safety in controller design, and generalizability beyond the training data.
As calculating Lipschitz constants is NP-hard, techniques for estimating Lipschitz constants must navigate the trade-off between scalability and accuracy.
In this work, we significantly push the scalability frontier of a semidefinite programming technique known as LipSDP while achieving zero accuracy loss.
arXiv Detail & Related papers (2022-04-02T11:57:52Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
Certified robustness is a desirable property for deep neural networks in safety-critical applications.
We show that our method consistently outperforms state-of-the-art methods on MNIST and TinyNet datasets.
arXiv Detail & Related papers (2021-11-02T06:44:10Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - CLIP: Cheap Lipschitz Training of Neural Networks [0.0]
We investigate a variational regularization method named CLIP for controlling the Lipschitz constant of a neural network.
We mathematically analyze the proposed model, in particular discussing the impact of the chosen regularization parameter on the output of the network.
arXiv Detail & Related papers (2021-03-23T13:29:24Z) - On Lipschitz Regularization of Convolutional Layers using Toeplitz
Matrix Theory [77.18089185140767]
Lipschitz regularity is established as a key property of modern deep learning.
computing the exact value of the Lipschitz constant of a neural network is known to be NP-hard.
We introduce a new upper bound for convolutional layers that is both tight and easy to compute.
arXiv Detail & Related papers (2020-06-15T13:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.