Addressing Data Annotation Challenges in Multiple Sensors: A Solution for Scania Collected Datasets
- URL: http://arxiv.org/abs/2403.18649v1
- Date: Wed, 27 Mar 2024 14:56:44 GMT
- Title: Addressing Data Annotation Challenges in Multiple Sensors: A Solution for Scania Collected Datasets
- Authors: Ajinkya Khoche, Aron Asefaw, Alejandro Gonzalez, Bogdan Timus, Sina Sharif Mansouri, Patric Jensfelt,
- Abstract summary: Data annotation in autonomous vehicles is a critical step in the development of Deep Neural Network (DNN) based models.
This article focuses on addressing this challenge, primarily within the context of Scania collected datasets.
The proposed solution takes a track of an annotated object as input and uses the Moving Horizon Estimation (MHE) to robustly estimate its speed.
- Score: 41.68378073302622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data annotation in autonomous vehicles is a critical step in the development of Deep Neural Network (DNN) based models or the performance evaluation of the perception system. This often takes the form of adding 3D bounding boxes on time-sequential and registered series of point-sets captured from active sensors like Light Detection and Ranging (LiDAR) and Radio Detection and Ranging (RADAR). When annotating multiple active sensors, there is a need to motion compensate and translate the points to a consistent coordinate frame and timestamp respectively. However, highly dynamic objects pose a unique challenge, as they can appear at different timestamps in each sensor's data. Without knowing the speed of the objects, their position appears to be different in different sensor outputs. Thus, even after motion compensation, highly dynamic objects are not matched from multiple sensors in the same frame, and human annotators struggle to add unique bounding boxes that capture all objects. This article focuses on addressing this challenge, primarily within the context of Scania collected datasets. The proposed solution takes a track of an annotated object as input and uses the Moving Horizon Estimation (MHE) to robustly estimate its speed. The estimated speed profile is utilized to correct the position of the annotated box and add boxes to object clusters missed by the original annotation.
Related papers
- STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - Detection Is Tracking: Point Cloud Multi-Sweep Deep Learning Models Revisited [0.0]
In autonomous driving, lidar measurements are usually passed through a "virtual sensor" realized by a deep learning model.
We argue in this paper that such an input already contains temporal information, and therefore the virtual sensor output should also contain temporal information.
We present a deep learning model called MULti-Sweep PAired Detector (MULSPAD) that produces, for each detected object, a pair of bounding boxes at both the end time and the beginning time of the input buffer.
arXiv Detail & Related papers (2024-02-24T08:07:48Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - Tackling Clutter in Radar Data -- Label Generation and Detection Using
PointNet++ [10.113809521379022]
We present two novel neural network setups for identifying clutter.
The input data, network architectures and training configuration are adjusted specifically for this task.
By applying it to existing data with object annotations and releasing its code, we effectively create the first freely available radar clutter data set.
arXiv Detail & Related papers (2023-03-16T17:46:32Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3D single object tracking plays an essential role in many applications, such as autonomous driving.
We propose CXTrack, a novel transformer-based network for 3D object tracking.
We show that CXTrack achieves state-of-the-art tracking performance while running at 29 FPS.
arXiv Detail & Related papers (2022-11-12T11:29:01Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
We evaluate how using a combination of different sensors affects the detection of the environment in which the vehicles move and operate.
The final objective is to identify the optimal setup that would minimize the amount of data to be distributed over the channel.
arXiv Detail & Related papers (2021-04-23T18:58:37Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.