Long Short-Term Memory Pattern Recognition in Currency Trading
- URL: http://arxiv.org/abs/2403.18839v1
- Date: Fri, 23 Feb 2024 12:59:49 GMT
- Title: Long Short-Term Memory Pattern Recognition in Currency Trading
- Authors: Jai Pal,
- Abstract summary: Wyckoff Phases is a framework devised by Richard D. Wyckoff in the early 20th century.
The research explores the phases of trading range and secondary test, elucidating their significance in understanding market dynamics.
By dissecting the intricacies of these phases, the study sheds light on the creation of liquidity through market structure.
The study highlights the transformative potential of AI-driven approaches in financial analysis and trading strategies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study delves into the analysis of financial markets through the lens of Wyckoff Phases, a framework devised by Richard D. Wyckoff in the early 20th century. Focusing on the accumulation pattern within the Wyckoff framework, the research explores the phases of trading range and secondary test, elucidating their significance in understanding market dynamics and identifying potential trading opportunities. By dissecting the intricacies of these phases, the study sheds light on the creation of liquidity through market structure, offering insights into how traders can leverage this knowledge to anticipate price movements and make informed decisions. The effective detection and analysis of Wyckoff patterns necessitate robust computational models capable of processing complex market data, with spatial data best analyzed using Convolutional Neural Networks (CNNs) and temporal data through Long Short-Term Memory (LSTM) models. The creation of training data involves the generation of swing points, representing significant market movements, and filler points, introducing noise and enhancing model generalization. Activation functions, such as the sigmoid function, play a crucial role in determining the output behavior of neural network models. The results of the study demonstrate the remarkable efficacy of deep learning models in detecting Wyckoff patterns within financial data, underscoring their potential for enhancing pattern recognition and analysis in financial markets. In conclusion, the study highlights the transformative potential of AI-driven approaches in financial analysis and trading strategies, with the integration of AI technologies shaping the future of trading and investment practices.
Related papers
- Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
This study investigates the efficacy of advanced deep learning models for short-term trend forecasting using daily and hourly closing prices from the S&P 500 index and the Brazilian ETF EWZ.
We introduce the Extended Long Short-Term Memory for Time Series (xLSTM-TS) model, an xLSTM adaptation optimised for time series prediction.
Among the models tested, xLSTM-TS consistently outperformed others. For example, it achieved a test accuracy of 72.82% and an F1 score of 73.16% on the EWZ daily dataset.
arXiv Detail & Related papers (2024-08-22T13:58:55Z) - Large Investment Model [7.712869313074975]
Large Investment Model (LIM) is a novel research paradigm designed to enhance both performance and efficiency at scale.
LIM employs end-to-end learning and universal modeling to create an upstream foundation model capable of autonomously learning comprehensive signal patterns from diverse financial data.
arXiv Detail & Related papers (2024-08-12T05:15:13Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
This paper delves into the potential of Long Short-Term Memory (LSTM) networks for predicting stock dynamics.
The study incorporates multiple features to enhance LSTM's capacity in capturing complex patterns.
The meticulously crafted LSTM incorporates crucial price and volume attributes over a 25-day time step.
arXiv Detail & Related papers (2023-12-09T07:53:25Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Futures Quantitative Investment with Heterogeneous Continual Graph
Neural Network [13.882054287609021]
This study aims to address the challenges of futures price prediction in high-frequency trading (HFT) by proposing a continuous learning factor predictor based on graph neural networks.
The model integrates multi- pricing theories with real-time market dynamics, effectively bypassing the limitations of existing methods.
Empirical tests on 49 commodity futures in China's futures market demonstrate that the proposed model outperforms other state-of-the-art models in terms of prediction accuracy.
arXiv Detail & Related papers (2023-03-29T08:39:36Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.