The Blind Normalized Stein Variational Gradient Descent-Based Detection for Intelligent Massive Random Access
- URL: http://arxiv.org/abs/2403.18846v1
- Date: Fri, 8 Mar 2024 04:08:40 GMT
- Title: The Blind Normalized Stein Variational Gradient Descent-Based Detection for Intelligent Massive Random Access
- Authors: Xin Zhu, Ahmet Enis Cetin,
- Abstract summary: We present a novel early preamble detection scheme based on a maximum likelihood estimation (MLE) model.
A novel blind normalized Stein variational gradient descent (SVGD)-based detector is proposed to obtain an approximate solution to the MLE model.
The proposed block MHT layer outperforms other transform-based methods in terms of costs and denoising performance.
- Score: 0.7655800373514546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The lack of an efficient preamble detection algorithm remains a challenge for solving preamble collision problems in intelligent massive random access (RA) in practical communication scenarios. To solve this problem, we present a novel early preamble detection scheme based on a maximum likelihood estimation (MLE) model at the first step of the grant-based RA procedure. A novel blind normalized Stein variational gradient descent (SVGD)-based detector is proposed to obtain an approximate solution to the MLE model. First, by exploring the relationship between the Hadamard transform and wavelet transform, a new modified Hadamard transform (MHT) is developed to separate high-frequencies from important components using the second-order derivative filter. Next, to eliminate noise and mitigate the vanishing gradients problem in the SVGD-based detectors, the block MHT layer is designed based on the MHT, scaling layer, soft-thresholding layer, inverse MHT and sparsity penalty. Then, the blind normalized SVGD algorithm is derived to perform preamble detection without prior knowledge of noise power and the number of active devices. The experimental results show the proposed block MHT layer outperforms other transform-based methods in terms of computation costs and denoising performance. Furthermore, with the assistance of the block MHT layer, the proposed blind normalized SVGD algorithm achieves a higher preamble detection accuracy and throughput than other state-of-the-art detection methods.
Related papers
- UDHF2-Net: Uncertainty-diffusion-model-based High-Frequency TransFormer Network for Remotely Sensed Imagery Interpretation [12.24506241611653]
Uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the first to be proposed.
UDHF2-Net is a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP)
Mask-and-geo-knowledge-based uncertainty diffusion module (MUDM) is a self-supervised learning strategy.
A frequency-wise semi-pseudo-Siamese UDHF2-Net is the first to be proposed to balance accuracy and complexity for change detection.
arXiv Detail & Related papers (2024-06-23T15:03:35Z) - Cross-Modal Learning for Anomaly Detection in Complex Industrial Process: Methodology and Benchmark [19.376814754500625]
Anomaly detection in complex industrial processes plays a pivotal role in ensuring efficient, stable, and secure operation.
This paper proposes a cross-modal Transformer to facilitate anomaly detection by exploring the correlation between visual features (video) and process variables (current) in the context of the fused magnesium smelting process.
We present a pioneering cross-modal benchmark of the fused magnesium smelting process, featuring synchronously acquired video and current data for over 2.2 million samples.
arXiv Detail & Related papers (2024-06-13T11:40:06Z) - M3DM-NR: RGB-3D Noisy-Resistant Industrial Anomaly Detection via Multimodal Denoising [63.39134873744748]
Existing industrial anomaly detection methods primarily concentrate on unsupervised learning with pristine RGB images.
This paper proposes a novel noise-resistant M3DM-NR framework to leverage strong multi-modal discriminative capabilities of CLIP.
Extensive experiments show that M3DM-NR outperforms state-of-the-art methods in 3D-RGB multi-modal noisy anomaly detection.
arXiv Detail & Related papers (2024-06-04T12:33:02Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Deep Unfolded Simulated Bifurcation for Massive MIMO Signal Detection [7.969977930633441]
Various signal detectors based on deep learning techniques and quantum(-inspired) algorithms have been proposed to improve the detection performance.
This paper focuses on the simulated bifurcation (SB) algorithm, a quantum-inspired algorithm.
arXiv Detail & Related papers (2023-06-28T14:46:55Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
Convolutional Neural Network (CNN) techniques have proven to be very useful in image-based anomaly detection applications.
We introduce a transfer learning framework for anomaly detection based on similarity measure with a Model of Normality (MoN)
We show that with the proposed threshold settings, a significant performance improvement can be achieved.
arXiv Detail & Related papers (2020-11-12T05:26:32Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.