Chirality-Induced Magnet-Free Spin Generation in a Semiconductor
- URL: http://arxiv.org/abs/2403.18964v1
- Date: Wed, 27 Mar 2024 19:27:06 GMT
- Title: Chirality-Induced Magnet-Free Spin Generation in a Semiconductor
- Authors: Tianhan Liu, Yuwaraj Adhikari, Hailong Wang, Yiyang Jiang, Zhenqi Hua, Haoyang Liu, Pedro Schlottmann, Hanwei Gao, Paul S. Weiss, Binghai Yan, Jianhua Zhao, Peng Xiong,
- Abstract summary: We show efficient creation of spin accumulation in n-doped GaAs via electric current injection from a normal metal (Au) electrode.
The experiment constitutes a definitive observation of CISS in a fully nonmagnetic device structure.
- Score: 0.9164012225012762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrical generation and transduction of polarized electron spins in semiconductors are of central interest in spintronics and quantum information science. While spin generation in semiconductors has been frequently realized via electrical injection from a ferromagnet, there are significant advantages in nonmagnetic pathways of creating spin polarization. One such pathway exploits the interplay of electron spin with chirality in electronic structures or real space. Here, utilizing chirality-induced spin selectivity (CISS), we demonstrate efficient creation of spin accumulation in n-doped GaAs via electric current injection from a normal metal (Au) electrode through a self-assembled monolayer of chiral molecules ({\alpha}-helix L-polyalanine, AHPA-L). The resulting spin polarization is detected as a Hanle effect in the n-GaAs, which is found to obey a distinct universal scaling with temperature and bias current consistent with chirality-induced spin accumulation. The experiment constitutes a definitive observation of CISS in a fully nonmagnetic device structure and demonstration of its ability to generate spin accumulation in a conventional semiconductor. The results thus place key constraints on the physical mechanism of CISS and present a new scheme for magnet-free semiconductor spintronics.
Related papers
- Spin torque driven electron paramagnetic resonance of a single spin in a pentacene molecule [0.0]
We demonstrate coherent driving of a single spin by a radiofrequency spin-polarized current.
With the excitation of electron paramagnetic resonance, we established dynamic control of single spins by spin torque.
arXiv Detail & Related papers (2024-06-25T13:03:43Z) - Interplay of Structural Chirality, Electron Spin and Topological Orbital
in Chiral Molecular Spin Valves [0.0]
Chirality has been a property of central importance in chemistry and biology for more than a century, and is now taking on increasing relevance in condensed matter physics.
electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids.
This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications.
arXiv Detail & Related papers (2022-09-16T18:05:29Z) - Inducing spin-order with an impurity: phase diagram of the magnetic Bose
polaron [0.0]
impurity atom dressed by spin-wave excitations in a one-dimensional spinor Bose gas.
Mean-field theory fails as the spinor gas approaches immiscibility since the generated spin-wave excitations are prominent.
arXiv Detail & Related papers (2022-04-22T23:54:39Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Hyperfine-mediated transitions between electronic spin-1/2 levels of
transition metal defects in SiC [0.0]
Transition metal defects in SiC give rise to localized electronic states that can be optically addressed in the telecom range.
For spin-1/2 defects, a combination of the defect symmetry and the strong spin-orbit coupling may restrict the allowed spin transitions.
We show via analytical and numerical results that the presence of a central nuclear spin can lead to a non-trivial mixing of electronic spin states.
arXiv Detail & Related papers (2021-04-26T09:48:25Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Maximising Dynamic Nuclear Polarisation via Selective Hyperfine Tuning [0.0]
We show that for systems of electronic spin $Sgeq1$ possessing an intrinsic zero-field splitting, a separate class of stronger hyperfine interactions may be utilised to improve DNP efficiency and yield.
We analytically review existing methods, and determine that this approach increases the rate of polarisation transfer to the nuclear ensemble by up to an order of magnitude over existing techniques.
arXiv Detail & Related papers (2020-12-23T06:19:15Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.