A Real-Time Framework for Domain-Adaptive Underwater Object Detection with Image Enhancement
- URL: http://arxiv.org/abs/2403.19079v1
- Date: Thu, 28 Mar 2024 01:00:08 GMT
- Title: A Real-Time Framework for Domain-Adaptive Underwater Object Detection with Image Enhancement
- Authors: Junjie Wen, Jinqiang Cui, Benyun Zhao, Bingxin Han, Xuchen Liu, Zhi Gao, Ben M. Chen,
- Abstract summary: EnYOLO is an integrated real-time framework designed for simultaneous underwater image enhancement (UIE) and object detection (UOD)
Our framework achieves state-of-the-art (SOTA) performance in both UIE and UOD tasks, but also shows superior adaptability when applied to different underwater scenarios.
- Score: 18.936260846385444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, significant progress has been made in the field of underwater image enhancement (UIE). However, its practical utility for high-level vision tasks, such as underwater object detection (UOD) in Autonomous Underwater Vehicles (AUVs), remains relatively unexplored. It may be attributed to several factors: (1) Existing methods typically employ UIE as a pre-processing step, which inevitably introduces considerable computational overhead and latency. (2) The process of enhancing images prior to training object detectors may not necessarily yield performance improvements. (3) The complex underwater environments can induce significant domain shifts across different scenarios, seriously deteriorating the UOD performance. To address these challenges, we introduce EnYOLO, an integrated real-time framework designed for simultaneous UIE and UOD with domain-adaptation capability. Specifically, both the UIE and UOD task heads share the same network backbone and utilize a lightweight design. Furthermore, to ensure balanced training for both tasks, we present a multi-stage training strategy aimed at consistently enhancing their performance. Additionally, we propose a novel domain-adaptation strategy to align feature embeddings originating from diverse underwater environments. Comprehensive experiments demonstrate that our framework not only achieves state-of-the-art (SOTA) performance in both UIE and UOD tasks, but also shows superior adaptability when applied to different underwater scenarios. Our efficiency analysis further highlights the substantial potential of our framework for onboard deployment.
Related papers
- FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - IA2U: A Transfer Plugin with Multi-Prior for In-Air Model to Underwater [18.491734287988304]
In underwater environments, variations in suspended particle concentration and turbidity cause severe image degradation.
We develop a transfer plugin with multiple priors for converting in-air models to underwater applications, named IA2U.
We show that IA2U combined with an in-air model can achieve superior performance in underwater image enhancement and object detection tasks.
arXiv Detail & Related papers (2023-12-12T03:26:04Z) - ADOD: Adaptive Domain-Aware Object Detection with Residual Attention for
Underwater Environments [1.2624532490634643]
This research presents ADOD, a novel approach to address domain generalization in underwater object detection.
Our method enhances the model's ability to generalize across diverse and unseen domains, ensuring robustness in various underwater environments.
arXiv Detail & Related papers (2023-12-11T19:20:56Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics.
We develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model.
We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks.
arXiv Detail & Related papers (2022-11-19T07:50:34Z) - Underwater Object Classification and Detection: first results and open
challenges [1.1549572298362782]
This work reviews the problem of object detection in underwater environments.
We analyse and quantify the shortcomings of conventional state-of-the-art (SOTA) algorithms.
arXiv Detail & Related papers (2022-01-04T04:54:08Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Demonstration-efficient Inverse Reinforcement Learning in Procedurally
Generated Environments [137.86426963572214]
Inverse Reinforcement Learning can extrapolate reward functions from expert demonstrations.
We show that our approach, DE-AIRL, is demonstration-efficient and still able to extrapolate reward functions which generalize to the fully procedural domain.
arXiv Detail & Related papers (2020-12-04T11:18:02Z) - DARE: AI-based Diver Action Recognition System using Multi-Channel CNNs
for AUV Supervision [3.5584173777587935]
This paper presents DARE, a diver action recognition system that is trained based on Cognitive Autonomous Driving Buddy dataset.
DARE is fast and requires only a few milliseconds to classify one stereo-pair, thus making it suitable for real-time underwater implementation.
arXiv Detail & Related papers (2020-11-16T04:05:32Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.