Mitigating Misleading Chain-of-Thought Reasoning with Selective Filtering
- URL: http://arxiv.org/abs/2403.19167v1
- Date: Thu, 28 Mar 2024 06:28:35 GMT
- Title: Mitigating Misleading Chain-of-Thought Reasoning with Selective Filtering
- Authors: Yexin Wu, Zhuosheng Zhang, Hai Zhao,
- Abstract summary: Large language models have manifested remarkable capabilities by leveraging chain-of-thought (CoT) reasoning techniques to solve intricate questions.
We propose a novel approach called the selective filtering reasoner (SelF-Reasoner) that assesses the entailment relationship between the question and the candidate reasoning chain.
SelF-Reasoner improves the fine-tuned T5 baseline consistently over the ScienceQA, ECQA, and LastLetter tasks.
- Score: 59.495717939664246
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models have manifested remarkable capabilities by leveraging chain-of-thought (CoT) reasoning techniques to solve intricate questions through step-by-step reasoning chains. Despite its success, the efficacy of such reasoning is inherently contingent upon the quality of CoT. However, flawless CoT reasoning cannot be guaranteed due to the presence of indecomposable questions and the potential for erroneous reasoning chains, particularly in the case of small-scale language models. To tackle this challenge, we propose a novel approach called the selective filtering reasoner (SelF-Reasoner) that assesses the entailment relationship between the question and the candidate reasoning chain. Then, we proceed with CoT reasoning when the reasoning chain demonstrates confidence; otherwise, we opt to predict the answer directly. SelF-Reasoner improves the fine-tuned T5 baseline consistently over the ScienceQA, ECQA, and LastLetter tasks. Code is available at \texttt{https://github.com/LibroWu/SelF-Reasoner}.
Related papers
- Chain-of-Probe: Examing the Necessity and Accuracy of CoT Step-by-Step [81.50681925980135]
We propose a method to probe changes in the mind during the model's reasoning.
By analyzing patterns in mind change, we examine the correctness of the model's reasoning.
Our validation reveals that many responses, although correct in their final answer, contain errors in their reasoning process.
arXiv Detail & Related papers (2024-06-23T15:50:22Z) - A Hopfieldian View-based Interpretation for Chain-of-Thought Reasoning [48.51969964676017]
Chain-of-Thought (CoT) holds a significant place in augmenting the reasoning performance for large language models.
We propose a Read-and-Control approach for controlling the accuracy of CoT.
arXiv Detail & Related papers (2024-06-18T04:07:13Z) - Preemptive Answer "Attacks" on Chain-of-Thought Reasoning [7.233752893356647]
Large language models (LLMs) showcase impressive reasoning capabilities when coupled with Chain-of-Thought prompting.
In this paper, we introduce a novel scenario termed preemptive answers, where the LLM obtains an answer before engaging in reasoning.
Experiments reveal that preemptive answers significantly impair the model's reasoning capability across various CoT methods and a broad spectrum of datasets.
arXiv Detail & Related papers (2024-05-31T15:15:04Z) - Towards Faithful Chain-of-Thought: Large Language Models are Bridging Reasoners [19.40385041079461]
Large language models (LLMs) suffer from serious unfaithful chain-of-thought (CoT) issues.
We first study the CoT faithfulness issue at the granularity of CoT steps, identify two reasoning paradigms.
We then conduct a joint analysis of the causal relevance among the context, CoT, and answer during reasoning.
arXiv Detail & Related papers (2024-05-29T09:17:46Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Measuring Faithfulness in Chain-of-Thought Reasoning [19.074147845029355]
Large language models (LLMs) perform better when they produce step-by-step, "Chain-of-Thought" (CoT) reasoning before answering a question.
It is unclear if the stated reasoning is a faithful explanation of the model's actual reasoning (i.e., its process for answering the question)
We investigate hypotheses for how CoT reasoning may be unfaithful, by examining how the model predictions change when we intervene on the CoT.
arXiv Detail & Related papers (2023-07-17T01:08:39Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
Large language models (LLMs) are difficult to verify the correctness and safety of their behavior.
One approach is to prompt LLMs to externalize their reasoning, by having them generate step-by-step reasoning as they answer a question.
This approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case.
Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT.
arXiv Detail & Related papers (2023-07-17T00:54:10Z) - Faithful Chain-of-Thought Reasoning [51.21714389639417]
Chain-of-Thought (CoT) prompting boosts Language Models' (LM) performance on a gamut of reasoning tasks.
We propose Faithful CoT, a reasoning framework involving two stages: Translation and Problem Solving.
This guarantees that the reasoning chain provides a faithful explanation of the final answer.
arXiv Detail & Related papers (2023-01-31T03:04:26Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs)
We show that CoT reasoning is possible even with invalid demonstrations.
arXiv Detail & Related papers (2022-12-20T05:20:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.