Algorithmic Ways of Seeing: Using Object Detection to Facilitate Art Exploration
- URL: http://arxiv.org/abs/2403.19174v1
- Date: Thu, 28 Mar 2024 06:46:45 GMT
- Title: Algorithmic Ways of Seeing: Using Object Detection to Facilitate Art Exploration
- Authors: Louie Søs Meyer, Johanne Engel Aaen, Anitamalina Regitse Tranberg, Peter Kun, Matthias Freiberger, Sebastian Risi, Anders Sundnes Løvlie,
- Abstract summary: We show how an object detection pipeline can be integrated into a design process for visual exploration.
We present the design and development of an app that enables exploration of an art museum's collection.
- Score: 8.680322662037721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This Research through Design paper explores how object detection may be applied to a large digital art museum collection to facilitate new ways of encountering and experiencing art. We present the design and evaluation of an interactive application called SMKExplore, which allows users to explore a museum's digital collection of paintings by browsing through objects detected in the images, as a novel form of open-ended exploration. We provide three contributions. First, we show how an object detection pipeline can be integrated into a design process for visual exploration. Second, we present the design and development of an app that enables exploration of an art museum's collection. Third, we offer reflections on future possibilities for museums and HCI researchers to incorporate object detection techniques into the digitalization of museums.
Related papers
- Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - Unlocking Textual and Visual Wisdom: Open-Vocabulary 3D Object Detection Enhanced by Comprehensive Guidance from Text and Image [70.02187124865627]
Open-vocabulary 3D object detection (OV-3DDet) aims to localize and recognize both seen and previously unseen object categories within any new 3D scene.
We leverage a vision foundation model to provide image-wise guidance for discovering novel classes in 3D scenes.
We demonstrate significant improvements in accuracy and generalization, highlighting the potential of foundation models in advancing open-vocabulary 3D object detection.
arXiv Detail & Related papers (2024-07-07T04:50:04Z) - Enhancing Object Detection in Ancient Documents with Synthetic Data
Generation and Transformer-Based Models [0.4125187280299248]
This research aims to enhance object detection in ancient documents by reducing false positives and improving precision.
We propose a method that involves the creation of synthetic datasets through computational mediation.
Our approach includes associating objects with their component parts and introducing a visual feature map to enable the model to discern between different symbols and document elements.
arXiv Detail & Related papers (2023-07-29T15:29:25Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - Embodied Navigation at the Art Gallery [43.52107532692226]
We build and release a new 3D space with unique characteristics: the one of a complete art museum.
Compared with existing 3D scenes, the collected space is ampler, richer in visual features, and provides very sparse occupancy information.
We deliver a new benchmark for PointGoal navigation inside this new space.
arXiv Detail & Related papers (2022-04-19T18:00:06Z) - Automatic Image Content Extraction: Operationalizing Machine Learning in
Humanistic Photographic Studies of Large Visual Archives [81.88384269259706]
We introduce Automatic Image Content Extraction framework for machine learning-based search and analysis of large image archives.
The proposed framework can be applied in several domains in humanities and social sciences.
arXiv Detail & Related papers (2022-04-05T12:19:24Z) - 3D Object Detection from Images for Autonomous Driving: A Survey [68.33502122185813]
3D object detection from images is one of the fundamental and challenging problems in autonomous driving.
More than 200 works have studied this problem from 2015 to 2021, encompassing a broad spectrum of theories, algorithms, and applications.
We provide the first comprehensive survey of this novel and continuously growing research field, summarizing the most commonly used pipelines for image-based 3D detection.
arXiv Detail & Related papers (2022-02-07T07:12:24Z) - Object Retrieval and Localization in Large Art Collections using Deep
Multi-Style Feature Fusion and Iterative Voting [10.807131260367298]
We introduce an algorithm that allows users to search for image regions containing specific motifs or objects.
Our region-based voting with GPU-accelerated approximate nearest-neighbour search allows us to find and localize even small motifs within an extensive dataset in a few seconds.
arXiv Detail & Related papers (2021-07-14T18:40:49Z) - Inverting and Understanding Object Detectors [15.207501110589924]
We propose using inversion as a primary tool to understand modern object detectors and develop an optimization-based approach to layout inversion.
We reveal intriguing properties of detectors by applying our layout inversion technique to a variety of modern object detectors.
arXiv Detail & Related papers (2021-06-26T03:31:59Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
Object pose detection and tracking has attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality.
Deep learning is the most promising one that has shown better performance than others.
This paper presents a comprehensive review of recent progress in object pose detection and tracking that belongs to the deep learning technical route.
arXiv Detail & Related papers (2021-05-29T12:59:29Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
We propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization.
We design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution.
arXiv Detail & Related papers (2020-12-20T18:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.