Offline Imitation Learning from Multiple Baselines with Applications to Compiler Optimization
- URL: http://arxiv.org/abs/2403.19462v1
- Date: Thu, 28 Mar 2024 14:34:02 GMT
- Title: Offline Imitation Learning from Multiple Baselines with Applications to Compiler Optimization
- Authors: Teodor V. Marinov, Alekh Agarwal, Mircea Trofin,
- Abstract summary: We study a Reinforcement Learning problem in which we are given a set of trajectories collected with K baseline policies.
The goal is to learn a policy which performs as well as the best combination of baselines on the entire state space.
- Score: 17.729842629392742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work studies a Reinforcement Learning (RL) problem in which we are given a set of trajectories collected with K baseline policies. Each of these policies can be quite suboptimal in isolation, and have strong performance in complementary parts of the state space. The goal is to learn a policy which performs as well as the best combination of baselines on the entire state space. We propose a simple imitation learning based algorithm, show a sample complexity bound on its accuracy and prove that the the algorithm is minimax optimal by showing a matching lower bound. Further, we apply the algorithm in the setting of machine learning guided compiler optimization to learn policies for inlining programs with the objective of creating a small binary. We demonstrate that we can learn a policy that outperforms an initial policy learned via standard RL through a few iterations of our approach.
Related papers
- Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion [44.95386817008473]
We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data.
We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient.
We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task.
arXiv Detail & Related papers (2024-06-27T14:03:49Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Provably Efficient Offline Goal-Conditioned Reinforcement Learning with
General Function Approximation and Single-Policy Concentrability [11.786486763236104]
Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills that aim to reach diverse goals.
offline GCRL only requires purely pre-collected datasets to perform training tasks.
We show that a modified offline GCRL algorithm is both provably efficient with general function approximation and single-policy concentrability.
arXiv Detail & Related papers (2023-02-07T22:04:55Z) - Optimistic Linear Support and Successor Features as a Basis for Optimal
Policy Transfer [7.970144204429356]
We introduce an SF-based extension of the Optimistic Linear Support algorithm to learn a set of policies whose SFs form a convex coverage set.
We prove that policies in this set can be combined via generalized policy improvement to construct optimal behaviors for any new linearly-expressible tasks.
arXiv Detail & Related papers (2022-06-22T19:00:08Z) - POLTER: Policy Trajectory Ensemble Regularization for Unsupervised
Reinforcement Learning [30.834631947104498]
We present POLTER - a method to regularize the pretraining that can be applied to any URL algorithm.
We evaluate POLTER on the Unsupervised Reinforcement Learning Benchmark (URLB), which consists of 12 tasks in 3 domains.
We demonstrate the generality of our approach by improving the performance of a diverse set of data- and knowledge-based URL algorithms by 19% on average and up to 40% in the best case.
arXiv Detail & Related papers (2022-05-23T14:42:38Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Constructing a Good Behavior Basis for Transfer using Generalized Policy
Updates [63.58053355357644]
We study the problem of learning a good set of policies, so that when combined together, they can solve a wide variety of unseen reinforcement learning tasks.
We show theoretically that having access to a specific set of diverse policies, which we call a set of independent policies, can allow for instantaneously achieving high-level performance.
arXiv Detail & Related papers (2021-12-30T12:20:46Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
We present a reinforcement learning algorithm for learning sparse non-parametric controllers in a Reproducing Kernel Hilbert Space.
We improve the sample complexity of this approach by imposing a structure of the state-action function through a normalized advantage function.
We demonstrate the performance of this algorithm on learning obstacle-avoidance policies in multiple simulations of a robot equipped with a laser scanner while navigating in a 2D environment.
arXiv Detail & Related papers (2021-03-26T13:58:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.