Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation
- URL: http://arxiv.org/abs/2403.19527v1
- Date: Thu, 28 Mar 2024 16:02:03 GMT
- Title: Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation
- Authors: Xiao Lin, Wenfei Yang, Yuan Gao, Tianzhu Zhang,
- Abstract summary: Category-level 6D object pose estimation aims to estimate the rotation, translation and size of unseen instances within specific categories.
We propose a novel Instance-Adaptive and Geometric-Aware Keypoint Learning method for category-level 6D object pose estimation (AG-Pose)
The proposed AG-Pose outperforms state-of-the-art methods by a large margin without category-specific shape priors.
- Score: 38.03793706479096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Category-level 6D object pose estimation aims to estimate the rotation, translation and size of unseen instances within specific categories. In this area, dense correspondence-based methods have achieved leading performance. However, they do not explicitly consider the local and global geometric information of different instances, resulting in poor generalization ability to unseen instances with significant shape variations. To deal with this problem, we propose a novel Instance-Adaptive and Geometric-Aware Keypoint Learning method for category-level 6D object pose estimation (AG-Pose), which includes two key designs: (1) The first design is an Instance-Adaptive Keypoint Detection module, which can adaptively detect a set of sparse keypoints for various instances to represent their geometric structures. (2) The second design is a Geometric-Aware Feature Aggregation module, which can efficiently integrate the local and global geometric information into keypoint features. These two modules can work together to establish robust keypoint-level correspondences for unseen instances, thus enhancing the generalization ability of the model.Experimental results on CAMERA25 and REAL275 datasets show that the proposed AG-Pose outperforms state-of-the-art methods by a large margin without category-specific shape priors.
Related papers
- SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation [79.12683101131368]
Category-level object pose estimation, aiming to predict the 6D pose and 3D size of objects from known categories, typically struggles with large intra-class shape variation.
We present SecondPose, a novel approach integrating object-specific geometric features with semantic category priors from DINOv2.
arXiv Detail & Related papers (2023-11-18T17:14:07Z) - SOCS: Semantically-aware Object Coordinate Space for Category-Level 6D
Object Pose Estimation under Large Shape Variations [12.348551686086255]
Most learning-based approaches to category-level 6D pose estimation are design around normalized object coordinate space (NOCS)
We propose Semantically-aware Object Coordinate Space (SOCS) built by warping-and-aligning the objects guided by a sparse set of keypoints with semantically meaningful correspondence.
arXiv Detail & Related papers (2023-03-18T06:34:16Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
We propose a novel framework for category-level object shape and pose estimation from a single RGB-D image.
To handle the intra-category variation, we adopt a semantic primitive representation that encodes diverse shapes into a unified latent space.
We show that the proposed method achieves SOTA pose estimation performance and better generalization in the real-world dataset.
arXiv Detail & Related papers (2022-10-03T17:51:54Z) - Pose for Everything: Towards Category-Agnostic Pose Estimation [93.07415325374761]
Category-Agnostic Pose Estimation (CAPE) aims to create a pose estimation model capable of detecting the pose of any class of object given only a few samples with keypoint definition.
A transformer-based Keypoint Interaction Module (KIM) is proposed to capture both the interactions among different keypoints and the relationship between the support and query images.
We also introduce Multi-category Pose (MP-100) dataset, which is a 2D pose dataset of 100 object categories containing over 20K instances and is well-designed for developing CAPE algorithms.
arXiv Detail & Related papers (2022-07-21T09:40:54Z) - On Hyperbolic Embeddings in 2D Object Detection [76.12912000278322]
We study whether a hyperbolic geometry better matches the underlying structure of the object classification space.
We incorporate a hyperbolic classifier in two-stage, keypoint-based, and transformer-based object detection architectures.
We observe categorical class hierarchies emerging in the structure of the classification space, resulting in lower classification errors and boosting the overall object detection performance.
arXiv Detail & Related papers (2022-03-15T16:43:40Z) - GPV-Pose: Category-level Object Pose Estimation via Geometry-guided
Point-wise Voting [103.74918834553249]
GPV-Pose is a novel framework for robust category-level pose estimation.
It harnesses geometric insights to enhance the learning of category-level pose-sensitive features.
It produces superior results to state-of-the-art competitors on common public benchmarks.
arXiv Detail & Related papers (2022-03-15T13:58:50Z) - Single-stage Keypoint-based Category-level Object Pose Estimation from
an RGB Image [27.234658117816103]
We propose a single-stage, keypoint-based approach for category-level object pose estimation.
The proposed network performs 2D object detection, detects 2D keypoints, estimates 6-DoF pose, and regresses relative bounding cuboid dimensions.
We conduct extensive experiments on the challenging Objectron benchmark, outperforming state-of-the-art methods on the 3D IoU metric.
arXiv Detail & Related papers (2021-09-13T17:55:00Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.