Human-compatible driving partners through data-regularized self-play reinforcement learning
- URL: http://arxiv.org/abs/2403.19648v2
- Date: Sat, 22 Jun 2024 23:47:54 GMT
- Title: Human-compatible driving partners through data-regularized self-play reinforcement learning
- Authors: Daphne Cornelisse, Eugene Vinitsky,
- Abstract summary: Human-Regularized PPO (HR-PPO) is a multi-agent algorithm where agents are trained through self-play with a small penalty for deviating from a human reference policy.
Results show our HR-PPO agents are highly effective in achieving goals, with a success rate of 93%, an off-road rate of 3.5%, and a collision rate of 3%.
- Score: 3.9682126792844583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central challenge for autonomous vehicles is coordinating with humans. Therefore, incorporating realistic human agents is essential for scalable training and evaluation of autonomous driving systems in simulation. Simulation agents are typically developed by imitating large-scale, high-quality datasets of human driving. However, pure imitation learning agents empirically have high collision rates when executed in a multi-agent closed-loop setting. To build agents that are realistic and effective in closed-loop settings, we propose Human-Regularized PPO (HR-PPO), a multi-agent algorithm where agents are trained through self-play with a small penalty for deviating from a human reference policy. In contrast to prior work, our approach is RL-first and only uses 30 minutes of imperfect human demonstrations. We evaluate agents in a large set of multi-agent traffic scenes. Results show our HR-PPO agents are highly effective in achieving goals, with a success rate of 93%, an off-road rate of 3.5%, and a collision rate of 3%. At the same time, the agents drive in a human-like manner, as measured by their similarity to existing human driving logs. We also find that HR-PPO agents show considerable improvements on proxy measures for coordination with human driving, particularly in highly interactive scenarios. We open-source our code and trained agents at https://github.com/Emerge-Lab/nocturne_lab and provide demonstrations of agent behaviors at https://sites.google.com/view/driving-partners.
Related papers
- HAIM-DRL: Enhanced Human-in-the-loop Reinforcement Learning for Safe and Efficient Autonomous Driving [2.807187711407621]
We propose an enhanced human-in-the-loop reinforcement learning method, termed the Human as AI mentor-based deep reinforcement learning (HAIM-DRL) framework.
We first introduce an innovative learning paradigm that effectively injects human intelligence into AI, termed Human as AI mentor (HAIM)
In this paradigm, the human expert serves as a mentor to the AI agent, while the agent could be guided to minimize traffic flow disturbance.
arXiv Detail & Related papers (2024-01-06T08:30:14Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
We introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios.
Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations.
arXiv Detail & Related papers (2023-06-09T20:12:02Z) - Can Agents Run Relay Race with Strangers? Generalization of RL to
Out-of-Distribution Trajectories [88.08381083207449]
We show the prevalence of emphgeneralization failure on controllable states from stranger agents.
We propose a novel method called Self-Trajectory Augmentation (STA), which will reset the environment to the agent's old states according to the Q function during training.
arXiv Detail & Related papers (2023-04-26T10:12:12Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - DDPG car-following model with real-world human driving experience in
CARLA [0.0]
We propose a two-stage Deep Reinforcement Learning (DRL) method, that learns from real-world human driving to achieve performance that is superior to the pure DRL agent.
For evaluation, we designed different real-world driving scenarios to compare the proposed two-stage DRL agent with the pure DRL agent.
arXiv Detail & Related papers (2021-12-29T15:22:31Z) - Maximum Entropy Population Based Training for Zero-Shot Human-AI
Coordination [21.800115245671737]
We consider the problem of training a Reinforcement Learning (RL) agent without using any human data to make it capable of collaborating with humans.
We derive a centralized population entropy objective to facilitate learning of a diverse population of agents, which is later used to train a robust agent to collaborate with unseen partners.
arXiv Detail & Related papers (2021-12-22T07:19:36Z) - Collaborating with Humans without Human Data [6.158826414652401]
We study the problem of how to train agents that collaborate well with human partners without using human data.
We train our agent partner as the best response to a population of self-play agents and their past checkpoints.
We find that Fictitious Co-Play (FCP) agents score significantly higher than SP, PP, and BCP when paired with novel agent and human partners.
arXiv Detail & Related papers (2021-10-15T16:03:57Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.