MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions
- URL: http://arxiv.org/abs/2403.19651v2
- Date: Mon, 24 Jun 2024 23:41:29 GMT
- Title: MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions
- Authors: Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan Qiao, Wenhu Chen, Yu Su, Ming-Wei Chang,
- Abstract summary: We introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions.
MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations.
MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks.
- Score: 64.89284104414865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens. Code and models are publicly available at https://open-vision-language.github.io/MagicLens/.
Related papers
- Composing Object Relations and Attributes for Image-Text Matching [70.47747937665987]
This work introduces a dual-encoder image-text matching model, leveraging a scene graph to represent captions with nodes for objects and attributes interconnected by relational edges.
Our model efficiently encodes object-attribute and object-object semantic relations, resulting in a robust and fast-performing system.
arXiv Detail & Related papers (2024-06-17T17:56:01Z) - Learning Comprehensive Representations with Richer Self for
Text-to-Image Person Re-Identification [34.289949134802086]
Text-to-image person re-identification (TIReID) retrieves pedestrian images of the same identity based on a query text.
Existing methods for TIReID typically treat it as a one-to-one image-text matching problem, only focusing on the relationship between image-text pairs within a view.
We propose a framework, called LCR$2$S, for modeling many-to-many correspondences of the same identity by learning representations for both modalities from a novel perspective.
arXiv Detail & Related papers (2023-10-17T12:39:16Z) - Rethinking Benchmarks for Cross-modal Image-text Retrieval [44.31783230767321]
Cross-modal semantic understanding and matching is a major challenge in image-text retrieval.
In this paper, we review the two common benchmarks and observe that they are insufficient to assess the true capability of models on fine-grained cross-modal semantic matching.
We propose a novel semi-automatic renovation approach to refine coarse-grained sentences into finer-grained ones with little human effort.
The results show that even the state-of-the-art models have much room for improvement in fine-grained semantic understanding.
arXiv Detail & Related papers (2023-04-21T09:07:57Z) - Re-Imagen: Retrieval-Augmented Text-to-Image Generator [58.60472701831404]
Retrieval-Augmented Text-to-Image Generator (Re-Imagen)
Retrieval-Augmented Text-to-Image Generator (Re-Imagen)
arXiv Detail & Related papers (2022-09-29T00:57:28Z) - NewsStories: Illustrating articles with visual summaries [49.924916589209374]
We introduce a large-scale multimodal dataset containing over 31M articles, 22M images and 1M videos.
We show that state-of-the-art image-text alignment methods are not robust to longer narratives with multiple images.
We introduce an intuitive baseline that outperforms these methods on zero-shot image-set retrieval by 10% on the GoodNews dataset.
arXiv Detail & Related papers (2022-07-26T17:34:11Z) - ARTEMIS: Attention-based Retrieval with Text-Explicit Matching and
Implicit Similarity [16.550790981646276]
Current approaches combine the features of each of the two elements of the query into a single representation.
Our work aims at shedding new light on the task by looking at it through the prism of two familiar and related frameworks: text-to-image and image-to-image retrieval.
arXiv Detail & Related papers (2022-03-15T17:29:20Z) - Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [72.60554897161948]
Recent text-to-image matching models apply contrastive learning to large corpora of uncurated pairs of images and sentences.
In this work, we repurpose such models to generate a descriptive text given an image at inference time.
The resulting captions are much less restrictive than those obtained by supervised captioning methods.
arXiv Detail & Related papers (2021-11-29T11:01:49Z) - Boosting Entity-aware Image Captioning with Multi-modal Knowledge Graph [96.95815946327079]
It is difficult to learn the association between named entities and visual cues due to the long-tail distribution of named entities.
We propose a novel approach that constructs a multi-modal knowledge graph to associate the visual objects with named entities.
arXiv Detail & Related papers (2021-07-26T05:50:41Z) - Learning to Represent Image and Text with Denotation Graph [32.417311523031195]
We propose learning representations from a set of implied, visually grounded expressions between image and text.
We show that state-of-the-art multimodal learning models can be further improved by leveraging automatically harvested structural relations.
arXiv Detail & Related papers (2020-10-06T18:00:58Z) - Deep Multimodal Image-Text Embeddings for Automatic Cross-Media
Retrieval [0.0]
We introduce an end-to-end deep multimodal convolutional-recurrent network for learning both vision and language representations simultaneously.
The model learns which pairs are a match (positive) and which ones are a mismatch (negative) using a hinge-based triplet ranking.
arXiv Detail & Related papers (2020-02-23T23:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.