Hierarchical Recurrent Adapters for Efficient Multi-Task Adaptation of Large Speech Models
- URL: http://arxiv.org/abs/2403.19709v1
- Date: Mon, 25 Mar 2024 17:21:56 GMT
- Title: Hierarchical Recurrent Adapters for Efficient Multi-Task Adaptation of Large Speech Models
- Authors: Tsendsuren Munkhdalai, Youzheng Chen, Khe Chai Sim, Fadi Biadsy, Tara Sainath, Pedro Moreno Mengibar,
- Abstract summary: We introduce an adapter module that has a better efficiency in large scale multi-task adaptation scenario.
The adapter consists of a single shared controller network and multiple task-level adapter heads.
- Score: 12.230087530720652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter efficient adaptation methods have become a key mechanism to train large pre-trained models for downstream tasks. However, their per-task parameter overhead is considered still high when the number of downstream tasks to adapt for is large. We introduce an adapter module that has a better efficiency in large scale multi-task adaptation scenario. Our adapter is hierarchical in terms of how the adapter parameters are allocated. The adapter consists of a single shared controller network and multiple task-level adapter heads to reduce the per-task parameter overhead without performance regression on downstream tasks. The adapter is also recurrent so the entire adapter parameters are reused across different layers of the pre-trained model. Our Hierarchical Recurrent Adapter (HRA) outperforms the previous adapter-based approaches as well as full model fine-tuning baseline in both single and multi-task adaptation settings when evaluated on automatic speech recognition tasks.
Related papers
- Adapters Strike Back [10.490880056507198]
We provide an in-depth study of adapters, their internal structure, as well as various implementation choices.
We suggest a concrete, improved adapter architecture, called Adapter+, that not only outperforms previous adapter implementations but surpasses a number of other, more complex adaptation mechanisms in several challenging settings.
arXiv Detail & Related papers (2024-06-10T22:07:57Z) - MerA: Merging Pretrained Adapters For Few-Shot Learning [71.44422347502409]
We propose textbftextttMerging Pretrained Adapters (MerA) that efficiently incorporates pretrained adapters to a single model through model fusion.
Experiments on two PLMs demonstrate that MerA substantial improvements compared to both single adapters and AdapterFusion.
arXiv Detail & Related papers (2023-08-30T12:10:17Z) - Multi-Head Adapter Routing for Cross-Task Generalization [56.75667096355806]
Polytropon learns an inventory of adapters and a routing function that selects a subset of adapters for each task during both pre-training and few-shot adaptation.
We find that routing is most beneficial during multi-task pre-training rather than during few-shot adaptation.
arXiv Detail & Related papers (2022-11-07T19:35:55Z) - AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large
Language Models [119.7093605087114]
Fine-tuning large-scale pre-trained language models to downstream tasks require updating hundreds of millions of parameters.
This not only increases the serving cost to store a large copy of the model weights for every task, but also exhibits instability during few-shot task adaptation.
We introduce a new mechanism to improve adapter capacity without increasing parameters or computational cost by two key techniques.
arXiv Detail & Related papers (2022-05-24T23:41:22Z) - Adaptable Adapters [74.65986170056945]
State-of-the-art pretrained NLP models contain a hundred million to trillion parameters.
Adaptable adapters contain different activation functions for different layers and different input data.
We show that adaptable adapters achieve on-par performances with the standard adapter architecture.
arXiv Detail & Related papers (2022-05-03T14:59:27Z) - AdapterBias: Parameter-efficient Token-dependent Representation Shift
for Adapters in NLP Tasks [55.705355299065474]
Transformer-based pre-trained models with millions of parameters require large storage.
Recent approaches tackle this shortcoming by training adapters, but these approaches still require a relatively large number of parameters.
In this study, AdapterBias, a surprisingly simple yet effective adapter architecture, is proposed.
arXiv Detail & Related papers (2022-04-30T16:49:41Z) - Parameter-efficient Multi-task Fine-tuning for Transformers via Shared
Hypernetworks [37.2958914602899]
We show that we can learn adapter parameters for all layers and tasks by generating them using shared hypernetworks.
Experiments on the well-known GLUE benchmark show improved performance in multi-task learning while adding only 0.29% parameters per task.
arXiv Detail & Related papers (2021-06-08T16:16:40Z) - AdapterDrop: On the Efficiency of Adapters in Transformers [53.845909603631945]
Massively pre-trained transformer models are computationally expensive to fine-tune, slow for inference, and have large storage requirements.
Recent approaches tackle these shortcomings by training smaller models, dynamically reducing the model size, and by training light-weight adapters.
arXiv Detail & Related papers (2020-10-22T17:49:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.