Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization
- URL: http://arxiv.org/abs/2403.19866v2
- Date: Tue, 2 Apr 2024 22:41:53 GMT
- Title: Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization
- Authors: Yuhang Li, Xin Dong, Chen Chen, Jingtao Li, Yuxin Wen, Michael Spranger, Lingjuan Lyu,
- Abstract summary: We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
- Score: 62.157627519792946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic image data generation represents a promising avenue for training deep learning models, particularly in the realm of transfer learning, where obtaining real images within a specific domain can be prohibitively expensive due to privacy and intellectual property considerations. This work delves into the generation and utilization of synthetic images derived from text-to-image generative models in facilitating transfer learning paradigms. Despite the high visual fidelity of the generated images, we observe that their naive incorporation into existing real-image datasets does not consistently enhance model performance due to the inherent distribution gap between synthetic and real images. To address this issue, we introduce a novel two-stage framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability and subsequently uses real data for rapid adaptation. Alongside, We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images. Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements, with up to 30% accuracy increase on classification tasks. Intriguingly, we note that the enhancements were not yet saturated, indicating that the benefits may further increase with an expanded volume of synthetic data.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Scaling Laws of Synthetic Images for Model Training ... for Now [54.43596959598466]
We study the scaling laws of synthetic images generated by state of the art text-to-image models.
We observe that synthetic images demonstrate a scaling trend similar to, but slightly less effective than, real images in CLIP training.
arXiv Detail & Related papers (2023-12-07T18:59:59Z) - Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with
Synthetic Images [37.29348016920314]
We present a new framework leveraging off-the-shelf generative models to generate synthetic training images.
We address class name ambiguity, lack of diversity in naive prompts, and domain shifts.
Our framework consistently enhances recognition model performance with more synthetic data.
arXiv Detail & Related papers (2023-12-04T18:35:27Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - Image Captions are Natural Prompts for Text-to-Image Models [70.30915140413383]
We analyze the relationship between the training effect of synthetic data and the synthetic data distribution induced by prompts.
We propose a simple yet effective method that prompts text-to-image generative models to synthesize more informative and diverse training data.
Our method significantly improves the performance of models trained on synthetic training data.
arXiv Detail & Related papers (2023-07-17T14:38:11Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Synthetic Image Data for Deep Learning [0.294944680995069]
Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models.
We show how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle.
arXiv Detail & Related papers (2022-12-12T20:28:13Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.