CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2403.19918v3
- Date: Mon, 14 Oct 2024 18:13:36 GMT
- Title: CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning
- Authors: Luke Rowe, Roger Girgis, Anthony Gosselin, Bruno Carrez, Florian Golemo, Felix Heide, Liam Paull, Christopher Pal,
- Abstract summary: CtRL-Sim is a method that leverages return-conditioned offline reinforcement learning (RL) to efficiently generate reactive and controllable traffic agents.
We show that CtRL-Sim can generate realistic safety-critical scenarios while providing fine-grained control over agent behaviours.
- Score: 38.63187494867502
- License:
- Abstract: Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However, agents replayed from offline data are not reactive and hard to intuitively control. Existing approaches address these challenges by proposing methods that rely on heuristics or generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning (RL) to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through a physics-enhanced Nocturne simulator to generate a diverse offline RL dataset, annotated with various rewards. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including adversarial behaviours. We show that CtRL-Sim can generate realistic safety-critical scenarios while providing fine-grained control over agent behaviours.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios [58.62407014256686]
RealGen is a novel retrieval-based in-context learning framework for traffic scenario generation.
RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way.
This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios.
arXiv Detail & Related papers (2023-12-19T23:11:06Z) - A Fully Data-Driven Approach for Realistic Traffic Signal Control Using
Offline Reinforcement Learning [18.2541182874636]
We propose a fully Data-Driven and simulator-free framework for realistic Traffic Signal Control (D2TSC)
We combine well-established traffic flow theory with machine learning to infer the reward signals from coarse-grained traffic data.
Our approach achieves superior performance over conventional and offline RL baselines, and also enjoys much better real-world applicability.
arXiv Detail & Related papers (2023-11-27T15:29:21Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Multi-Objective Decision Transformers for Offline Reinforcement Learning [7.386356540208436]
offline RL is structured to derive policies from static trajectory data without requiring real-time environment interactions.
We reformulate offline RL as a multi-objective optimization problem, where prediction is extended to states and returns.
Our experiments on D4RL benchmark locomotion tasks reveal that our propositions allow for more effective utilization of the attention mechanism in the transformer model.
arXiv Detail & Related papers (2023-08-31T00:47:58Z) - PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous
Agents via Personalized Simulators [19.026312915461553]
We propose a model-based offline reinforcement learning (RL) approach called PerSim.
We first learn a personalized simulator for each agent by collectively using the historical trajectories across all agents prior to learning a policy.
This representation suggests a simple, regularized neural network architecture to effectively learn the transition dynamics per agent, even with scarce, offline data.
arXiv Detail & Related papers (2021-02-13T17:16:41Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Development of A Stochastic Traffic Environment with Generative
Time-Series Models for Improving Generalization Capabilities of Autonomous
Driving Agents [0.0]
We develop a data driven traffic simulator by training a generative adverserial network (GAN) on real life trajectory data.
The simulator generates randomized trajectories that resembles real life traffic interactions between vehicles.
We demonstrate through simulations that RL agents trained on GAN-based traffic simulator has stronger generalization capabilities compared to RL agents trained on simple rule-driven simulators.
arXiv Detail & Related papers (2020-06-10T13:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.