FairRAG: Fair Human Generation via Fair Retrieval Augmentation
- URL: http://arxiv.org/abs/2403.19964v3
- Date: Fri, 5 Apr 2024 20:33:14 GMT
- Title: FairRAG: Fair Human Generation via Fair Retrieval Augmentation
- Authors: Robik Shrestha, Yang Zou, Qiuyu Chen, Zhiheng Li, Yusheng Xie, Siqi Deng,
- Abstract summary: We introduce Fair Retrieval Augmented Generation (FairRAG), a novel framework that conditions pre-trained generative models on reference images retrieved from an external image database to improve fairness in human generation.
To enhance fairness, FairRAG applies simple-yet-effective debiasing strategies, providing images from diverse demographic groups during the generative process.
- Score: 27.069276012884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing text-to-image generative models reflect or even amplify societal biases ingrained in their training data. This is especially concerning for human image generation where models are biased against certain demographic groups. Existing attempts to rectify this issue are hindered by the inherent limitations of the pre-trained models and fail to substantially improve demographic diversity. In this work, we introduce Fair Retrieval Augmented Generation (FairRAG), a novel framework that conditions pre-trained generative models on reference images retrieved from an external image database to improve fairness in human generation. FairRAG enables conditioning through a lightweight linear module that projects reference images into the textual space. To enhance fairness, FairRAG applies simple-yet-effective debiasing strategies, providing images from diverse demographic groups during the generative process. Extensive experiments demonstrate that FairRAG outperforms existing methods in terms of demographic diversity, image-text alignment, and image fidelity while incurring minimal computational overhead during inference.
Related papers
- YaART: Yet Another ART Rendering Technology [119.09155882164573]
This study introduces YaART, a novel production-grade text-to-image cascaded diffusion model aligned to human preferences.
We analyze how these choices affect both the efficiency of the training process and the quality of the generated images.
We demonstrate that models trained on smaller datasets of higher-quality images can successfully compete with those trained on larger datasets.
arXiv Detail & Related papers (2024-04-08T16:51:19Z) - Benchmarking the Fairness of Image Upsampling Methods [29.01986714656294]
We develop a set of metrics for performance and fairness of conditional generative models.
We benchmark their imbalances and diversity.
As part of the study, a subset of datasets replicates the racial distribution of common-scale face.
arXiv Detail & Related papers (2024-01-24T16:13:26Z) - Fair Text-to-Image Diffusion via Fair Mapping [32.02815667307623]
We propose a flexible, model-agnostic, and lightweight approach that modifies a pre-trained text-to-image diffusion model.
By effectively addressing the issue of implicit language bias, our method produces more fair and diverse image outputs.
arXiv Detail & Related papers (2023-11-29T15:02:01Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - DeAR: Debiasing Vision-Language Models with Additive Residuals [5.672132510411465]
Large pre-trained vision-language models (VLMs) provide rich, adaptable image and text representations.
These models suffer from societal biases owing to the skewed distribution of various identity groups in the training data.
We present DeAR, a novel debiasing method that learns additive residual image representations to offset the original representations.
arXiv Detail & Related papers (2023-03-18T14:57:43Z) - Fair Diffusion: Instructing Text-to-Image Generation Models on Fairness [15.059419033330126]
We present a novel strategy, called Fair Diffusion, to attenuate biases after the deployment of generative text-to-image models.
Specifically, we demonstrate shifting a bias, based on human instructions, in any direction yielding arbitrarily new proportions for, e.g., identity groups.
This introduced control enables instructing generative image models on fairness, with no data filtering and additional training required.
arXiv Detail & Related papers (2023-02-07T18:25:28Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
We evaluate the performance of four state-of-the-art deep face recognition models in the presence of image distortions.
We have observed that image distortions have a relationship with the performance gap of the model across different subgroups.
arXiv Detail & Related papers (2021-08-14T16:49:05Z) - More Photos are All You Need: Semi-Supervised Learning for Fine-Grained
Sketch Based Image Retrieval [112.1756171062067]
We introduce a novel semi-supervised framework for cross-modal retrieval.
At the centre of our design is a sequential photo-to-sketch generation model.
We also introduce a discriminator guided mechanism to guide against unfaithful generation.
arXiv Detail & Related papers (2021-03-25T17:27:08Z) - Improving the Fairness of Deep Generative Models without Retraining [41.6580482370894]
Generative Adversarial Networks (GANs) advance face synthesis through learning the underlying distribution of observed data.
Despite the high-quality generated faces, some minority groups can be rarely generated from the trained models due to a biased image generation process.
We propose an interpretable baseline method to balance the output facial attributes without retraining.
arXiv Detail & Related papers (2020-12-09T03:20:41Z) - Inclusive GAN: Improving Data and Minority Coverage in Generative Models [101.67587566218928]
We formalize the problem of minority inclusion as one of data coverage.
We then propose to improve data coverage by harmonizing adversarial training with reconstructive generation.
We develop an extension that allows explicit control over the minority subgroups that the model should ensure to include.
arXiv Detail & Related papers (2020-04-07T13:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.