Colorful Cutout: Enhancing Image Data Augmentation with Curriculum Learning
- URL: http://arxiv.org/abs/2403.20012v1
- Date: Fri, 29 Mar 2024 06:53:52 GMT
- Title: Colorful Cutout: Enhancing Image Data Augmentation with Curriculum Learning
- Authors: Juhwan Choi, YoungBin Kim,
- Abstract summary: In this study, we adopt curriculum data augmentation for image data augmentation and propose colorful cutout.
Our experimental results highlight the possibility of curriculum data augmentation for image data.
- Score: 8.406910685074136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation is one of the regularization strategies for the training of deep learning models, which enhances generalizability and prevents overfitting, leading to performance improvement. Although researchers have proposed various data augmentation techniques, they often lack consideration for the difficulty of augmented data. Recently, another line of research suggests incorporating the concept of curriculum learning with data augmentation in the field of natural language processing. In this study, we adopt curriculum data augmentation for image data augmentation and propose colorful cutout, which gradually increases the noise and difficulty introduced in the augmented image. Our experimental results highlight the possibility of curriculum data augmentation for image data. We publicly released our source code to improve the reproducibility of our study.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - DualAug: Exploiting Additional Heavy Augmentation with OOD Data
Rejection [77.6648187359111]
We propose a novel data augmentation method, named textbfDualAug, to keep the augmentation in distribution as much as possible at a reasonable time and computational cost.
Experiments on supervised image classification benchmarks show that DualAug improve various automated data augmentation method.
arXiv Detail & Related papers (2023-10-12T08:55:10Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models.
Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples.
We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
arXiv Detail & Related papers (2023-02-07T20:42:28Z) - Diffusion-based Data Augmentation for Skin Disease Classification:
Impact Across Original Medical Datasets to Fully Synthetic Images [2.5075774184834803]
Deep neural networks still rely on large amounts of training data to avoid overfitting.
Labeled training data for real-world applications such as healthcare is limited and difficult to access.
We build upon the emerging success of text-to-image diffusion probabilistic models in augmenting the training samples of our macroscopic skin disease dataset.
arXiv Detail & Related papers (2023-01-12T04:22:23Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
We provide a background of data augmentation, a novel and comprehensive taxonomy of reviewed data augmentation techniques, and the strengths and weaknesses (wherever possible) of each technique.
We also provide comprehensive results of the data augmentation effect on three popular computer vision tasks, such as image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2023-01-07T11:37:32Z) - Augmentation Learning for Semi-Supervised Classification [13.519613713213277]
We propose a Semi-Supervised Learning method that automatically selects the most effective data augmentation policy for a particular dataset.
We show how policy learning can be used to adapt augmentations to datasets beyond ImageNet.
arXiv Detail & Related papers (2022-08-03T10:06:51Z) - Image Data Augmentation for Deep Learning: A Survey [8.817690876855728]
We systematically review different image data augmentation methods.
We propose a taxonomy of reviewed methods and present the strengths and limitations of these methods.
We also conduct extensive experiments with various data augmentation methods on three typical computer vision tasks.
arXiv Detail & Related papers (2022-04-19T02:05:56Z) - TeachAugment: Data Augmentation Optimization Using Teacher Knowledge [11.696069523681178]
We propose a data augmentation optimization method based on the adversarial strategy called TeachAugment.
We show that TeachAugment outperforms existing methods in experiments of image classification, semantic segmentation, and unsupervised representation learning tasks.
arXiv Detail & Related papers (2022-02-25T06:22:51Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
We show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets.
We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
arXiv Detail & Related papers (2021-03-30T17:59:49Z) - KeepAugment: A Simple Information-Preserving Data Augmentation Approach [42.164438736772134]
We propose a simple yet highly effective approach, dubbed emphKeepAugment, to increase augmented images fidelity.
The idea is first to use the saliency map to detect important regions on the original images and then preserve these informative regions during augmentation.
Empirically, we demonstrate our method significantly improves on a number of prior art data augmentation schemes.
arXiv Detail & Related papers (2020-11-23T22:43:04Z) - Data Augmentation for Meta-Learning [58.47185740820304]
meta-learning algorithms sample data, query data, and tasks on each training step.
Data augmentation can be used not only to expand the number of images available per class, but also to generate entirely new classes/tasks.
Our proposed meta-specific data augmentation significantly improves the performance of meta-learners on few-shot classification benchmarks.
arXiv Detail & Related papers (2020-10-14T13:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.