Counterdiabatic, Better, Faster, Stronger: Optimal control for approximate counterdiabatic driving
- URL: http://arxiv.org/abs/2403.20267v1
- Date: Fri, 29 Mar 2024 16:18:10 GMT
- Title: Counterdiabatic, Better, Faster, Stronger: Optimal control for approximate counterdiabatic driving
- Authors: Ieva Čepaitė,
- Abstract summary: This thesis is dedicated to the discovery of new ways to combine optimal control techniques with a universal method from STA: counterdiabatic driving (CD)
The CD approach offers perfect suppression of all non-adiabatic effects experienced by a system driven by a time-dependent Hamiltonian regardless of how fast the process occurs.
The main result presented in the thesis is thus the development of a new method called counterdiabatic optimized local driving (COLD)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adiabatic protocols are employed across a variety of quantum technologies, from implementing state preparation and individual operations that are building blocks of larger devices, to higher-level protocols in quantum annealing and adiabatic quantum computation. The main drawback of adiabatic processes, however, is that they require prohibitively long timescales. This generally leads to losses due to decoherence and heating processes. The problem of speeding up system dynamics while retaining the adiabatic condition has garnered a large amount of interest, resulting in a whole host of diverse methods and approaches made for this purpose. This thesis is dedicated to the discovery of new ways to combine optimal control techniques with a universal method from STA: counterdiabatic driving (CD). The CD approach offers perfect suppression of all non-adiabatic effects experienced by a system driven by a time-dependent Hamiltonian regardless of how fast the process occurs. In practice, however, exact CD is difficult to derive often even more difficult to implement. The main result presented in the thesis is thus the development of a new method called counterdiabatic optimized local driving (COLD), which implements optimal control techniques in tandem with \emph{approximations} of exact CD in a way that maximises suppression of non-adiabatic effects.
Related papers
- Shortcuts to adiabaticity designed via time-rescaling follow the same transitionless route [41.94295877935867]
Time-rescaling (TR) has been recently proposed as a method to engineer fast processes.
We show that the obtained fast dynamics are transitionless, similar to the ones designed via the famous counterdiabatic (CD) approach.
arXiv Detail & Related papers (2024-06-11T16:34:36Z) - Efficient Paths for Local Counterdiabatic Driving [0.0]
Local counterdiabatic driving (CD) provides a feasible approach for realizing approximate reversible/adiabatic processes.
We describe a systematic method for altering the adiabatic path by adding extra local controls.
We show that these methods provides dramatic improvement in the preparation of non-trivial GHZ ground states.
arXiv Detail & Related papers (2024-01-22T19:00:02Z) - Beyond Exponentially Fast Mixing in Average-Reward Reinforcement
Learning via Multi-Level Monte Carlo Actor-Critic [61.968469104271676]
We propose an RL methodology attuned to the mixing time by employing a multi-level Monte Carlo estimator for the critic, the actor, and the average reward embedded within an actor-critic (AC) algorithm.
We experimentally show that these alleviated restrictions on the technical conditions required for stability translate to superior performance in practice for RL problems with sparse rewards.
arXiv Detail & Related papers (2023-01-28T04:12:56Z) - Fast adiabatic control of an optomechanical cavity [62.997667081978825]
We present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors.
We find analytical expressions that give us effective trajectories which implement a STA for the quantum field inside the cavity.
arXiv Detail & Related papers (2022-11-09T15:32:28Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Shortcuts to thermodynamic quasistaticity [0.0]
We take inspiration from thermodynamics and propose to focus on the macrostate, rather than the microstate.
We demonstrate this approach by improving upon fast quasiadiabatic driving, and by applying the method to the quantum Ising chain in the transverse field.
arXiv Detail & Related papers (2022-06-24T18:14:25Z) - Counterdiabatic Optimised Local Driving [0.0]
Adiabatic protocols are employed across a variety of quantum technologies.
The problem of speeding up these processes has garnered a large amount of interest.
Two approaches are complementary: optimal control manipulates control fields to steer the dynamics.
shortcuts to adiabaticity aim to retain the adiabatic condition upon speed-up.
arXiv Detail & Related papers (2022-03-03T19:00:00Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Analytic Design of Accelerated Adiabatic Gates in Realistic Qubits:
General Theory and Applications to Superconducting Circuits [0.0]
"Shortcuts to adiabaticity" is a general method for speeding up adiabatic quantum protocols.
We develop an $analytic$ approach that allows one to go beyond these limitations.
We show in detail how our ideas can be used to analytically design high-fidelity single-qubit "tripod" gates in a realistic superconducting fluxonium qubit.
arXiv Detail & Related papers (2021-02-04T02:11:06Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Reinforcement Learning for Many-Body Ground-State Preparation Inspired
by Counterdiabatic Driving [2.5614220901453333]
CD-QAOA is designed for quantum many-body systems and optimized using a reinforcement learning (RL) approach.
We show that using terms occurring in the adiabatic gauge potential as generators of additional control unitaries, it is possible to achieve fast high-fidelity many-body control away from the adiabatic regime.
This work paves the way to incorporate recent success from deep learning for the purpose of quantum many-body control.
arXiv Detail & Related papers (2020-10-07T21:13:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.