AgileFormer: Spatially Agile Transformer UNet for Medical Image Segmentation
- URL: http://arxiv.org/abs/2404.00122v2
- Date: Tue, 17 Sep 2024 01:48:54 GMT
- Title: AgileFormer: Spatially Agile Transformer UNet for Medical Image Segmentation
- Authors: Peijie Qiu, Jin Yang, Sayantan Kumar, Soumyendu Sekhar Ghosh, Aristeidis Sotiras,
- Abstract summary: We argue that the current design of the vision transformer-based UNet (ViT-UNet) segmentation models may not effectively handle the heterogeneous appearance.
We present a structured approach to introduce spatially dynamic components to the ViT-UNet.
This adaptation enables the model to effectively capture features of target objects with diverse appearances.
- Score: 1.657223496316251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past decades, deep neural networks, particularly convolutional neural networks, have achieved state-of-the-art performance in a variety of medical image segmentation tasks. Recently, the introduction of the vision transformer (ViT) has significantly altered the landscape of deep segmentation models. There has been a growing focus on ViTs, driven by their excellent performance and scalability. However, we argue that the current design of the vision transformer-based UNet (ViT-UNet) segmentation models may not effectively handle the heterogeneous appearance (e.g., varying shapes and sizes) of objects of interest in medical image segmentation tasks. To tackle this challenge, we present a structured approach to introduce spatially dynamic components to the ViT-UNet. This adaptation enables the model to effectively capture features of target objects with diverse appearances. This is achieved by three main components: \textbf{(i)} deformable patch embedding; \textbf{(ii)} spatially dynamic multi-head attention; \textbf{(iii)} deformable positional encoding. These components were integrated into a novel architecture, termed AgileFormer. AgileFormer is a spatially agile ViT-UNet designed for medical image segmentation. Experiments in three segmentation tasks using publicly available datasets demonstrated the effectiveness of the proposed method. The code is available at \href{https://github.com/sotiraslab/AgileFormer}{https://github.com/sotiraslab/AgileFormer}.
Related papers
- MSA$^2$Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation [8.404273502720136]
We introduce MSA$2$Net, a new deep segmentation framework featuring an expedient design of skip-connections.
We propose a Multi-Scale Adaptive Spatial Attention Gate (MASAG) to ensure that spatially relevant features are selectively highlighted.
Our MSA$2$Net outperforms state-of-the-art (SOTA) works or matches their performance.
arXiv Detail & Related papers (2024-07-31T14:41:10Z) - Semantic Segmentation using Vision Transformers: A survey [0.0]
Convolutional neural networks (CNN) and Vision Transformers (ViTs) provide the architecture models for semantic segmentation.
ViTs have proven success in image classification, they cannot be directly applied to dense prediction tasks such as image segmentation and object detection.
This survey aims to review and compare the performances of ViT architectures designed for semantic segmentation using benchmarking datasets.
arXiv Detail & Related papers (2023-05-05T04:11:00Z) - Transformer-Based Visual Segmentation: A Survey [118.01564082499948]
Visual segmentation seeks to partition images, video frames, or point clouds into multiple segments or groups.
Transformers are a type of neural network based on self-attention originally designed for natural language processing.
Transformers offer robust, unified, and even simpler solutions for various segmentation tasks.
arXiv Detail & Related papers (2023-04-19T17:59:02Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Dynamic Linear Transformer for 3D Biomedical Image Segmentation [2.440109381823186]
Transformer-based neural networks have surpassed promising performance on many biomedical image segmentation tasks.
Main challenge for 3D transformer-based segmentation methods is the quadratic complexity introduced by the self-attention mechanism.
We propose a novel transformer architecture for 3D medical image segmentation using an encoder-decoder style architecture with linear complexity.
arXiv Detail & Related papers (2022-06-01T21:15:01Z) - A Simple Single-Scale Vision Transformer for Object Localization and
Instance Segmentation [79.265315267391]
We propose a simple and compact ViT architecture called Universal Vision Transformer (UViT)
UViT achieves strong performance on object detection and instance segmentation tasks.
arXiv Detail & Related papers (2021-12-17T20:11:56Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
Existing semantic segmentation approaches either aim to improve the object's inner consistency by modeling the global context, or refine objects detail along their boundaries by multi-scale feature fusion.
In this paper, a new paradigm for semantic segmentation is proposed.
Our insight is that appealing performance of semantic segmentation requires textitexplicitly modeling the object textitbody and textitedge, which correspond to the high and low frequency of the image.
We show that the proposed framework with various baselines or backbone networks leads to better object inner consistency and object boundaries.
arXiv Detail & Related papers (2020-07-20T12:11:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.