Loss resilience of driven-dissipative remote entanglement in chiral waveguide quantum electrodynamics
- URL: http://arxiv.org/abs/2404.00142v1
- Date: Fri, 29 Mar 2024 20:29:34 GMT
- Title: Loss resilience of driven-dissipative remote entanglement in chiral waveguide quantum electrodynamics
- Authors: Abdullah Irfan, Mingxing Yao, Andrew Lingenfelter, Xi Cao, Aashish A. Clerk, Wolfgang Pfaff,
- Abstract summary: We study limits of entanglement stabilization between remote qubits.
We find that by coupling a pair of storage qubits to the two driven qubits, the steady state can be tailored.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Establishing limits of entanglement in open quantum systems is a problem of fundamental interest, with strong implications for applications in quantum information science. Here, we study limits of entanglement stabilization between remote qubits. We theoretically investigate the loss resilience of driven-dissipative entanglement between remote qubits coupled to a chiral waveguide. We find that by coupling a pair of storage qubits to the two driven qubits, the steady state can be tailored such that the storage qubits show a degree of entanglement that is higher than what can be achieved with only two driven qubits coupled to the waveguide. By reducing the degree of entanglement of the driven qubits, we show that the entanglement between the storage qubits becomes more resilient to waveguide loss. Our analytical and numerical results offer insights into how waveguide loss limits the degree of entanglement in this driven-dissipative system, and offers important guidance for remote entanglement stabilization in the laboratory, for example using superconducting circuits.
Related papers
- Qubit-controlled directional edge states in waveguide QED [0.0]
We show that the chirality of photonic bound state, that emerges in the bandgap of the waveguide, depends only on the energy of the qubit.
In contrast to previous proposals that have either shown imperfect chirality or fixed directionality, our waveguide QED scheme achieves both perfect chirality and the capability to switch the directionality on demand with just one tunable element.
arXiv Detail & Related papers (2022-11-30T20:29:52Z) - Chirality-induced one-way quantum steering between two
waveguide-mediated ferrimagnetic microspheres [0.0]
One-way quantum steering is of importance for quantum technologies, such as secure quantum teleportation.
We study the generation of one-way quantum steering between two distant yttrium iron garnet (YIG) microspheres in chiral waveguide electromagonics.
arXiv Detail & Related papers (2022-10-03T04:34:12Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Coherent control of a symmetry-engineered multi-qubit dark state in
waveguide quantum electrodynamics [0.0]
Quantum electrodynamics studies qubits coupled to a mode continuum, exposing them to a loss channel and causing quantum information to be lost before coherent operations can be performed.
Here we restore coherence by realizing a dark state that exploits symmetry properties and interactions between four qubits.
Our experiment paves the way for implementations of quantum many-body physics in waveguides and the realization of quantum information protocols using decoherence-free subspaces.
arXiv Detail & Related papers (2021-06-10T10:06:23Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Enhancement of spontaneous entanglement generation via coherent quantum
feedback [1.9664223844337747]
We investigate the entanglement dynamics of two two-level emitters (qubits) mediated by a semiinfinite, one-dimensional (1D) photonic waveguide.
We show that the chirally generated entanglement between the qubits can be preserved by controlling the time delay of the feedback.
arXiv Detail & Related papers (2020-03-04T16:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.