Look-Around Before You Leap: High-Frequency Injected Transformer for Image Restoration
- URL: http://arxiv.org/abs/2404.00279v1
- Date: Sat, 30 Mar 2024 08:05:00 GMT
- Title: Look-Around Before You Leap: High-Frequency Injected Transformer for Image Restoration
- Authors: Shihao Zhou, Duosheng Chen, Jinshan Pan, Jufeng Yang,
- Abstract summary: In this paper, we propose HIT, a simple yet effective High-frequency Injected Transformer for image restoration.
Specifically, we design a window-wise injection module (WIM), which incorporates abundant high-frequency details into the feature map, to provide reliable references for restoring high-quality images.
In addition, we introduce a spatial enhancement unit (SEU) to preserve essential spatial relationships that may be lost due to the computations carried out across channel dimensions in the BIM.
- Score: 46.96362010335177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based approaches have achieved superior performance in image restoration, since they can model long-term dependencies well. However, the limitation in capturing local information restricts their capacity to remove degradations. While existing approaches attempt to mitigate this issue by incorporating convolutional operations, the core component in Transformer, i.e., self-attention, which serves as a low-pass filter, could unintentionally dilute or even eliminate the acquired local patterns. In this paper, we propose HIT, a simple yet effective High-frequency Injected Transformer for image restoration. Specifically, we design a window-wise injection module (WIM), which incorporates abundant high-frequency details into the feature map, to provide reliable references for restoring high-quality images. We also develop a bidirectional interaction module (BIM) to aggregate features at different scales using a mutually reinforced paradigm, resulting in spatially and contextually improved representations. In addition, we introduce a spatial enhancement unit (SEU) to preserve essential spatial relationships that may be lost due to the computations carried out across channel dimensions in the BIM. Extensive experiments on 9 tasks (real noise, real rain streak, raindrop, motion blur, moir\'e, shadow, snow, haze, and low-light condition) demonstrate that HIT with linear computational complexity performs favorably against the state-of-the-art methods. The source code and pre-trained models will be available at https://github.com/joshyZhou/HIT.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining [47.15857899099733]
We develop an end-to-end multi-scale Transformer to facilitate high-quality image reconstruction.
We incorporate intra-scale implicit neural representations based on pixel coordinates with the degraded inputs in a closed-loop design.
Our approach, named as NeRD-Rain, performs favorably against the state-of-the-art ones on both synthetic and real-world benchmark datasets.
arXiv Detail & Related papers (2024-04-02T01:18:16Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising.
We propose a new Hybrid Attention Transformer (HAT) to activate more input pixels for better restoration.
Our HAT achieves state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-09-11T05:17:55Z) - WavePaint: Resource-efficient Token-mixer for Self-supervised Inpainting [2.3014300466616078]
This paper diverges from vision transformers by using a computationally-efficient WaveMix-based fully convolutional architecture -- WavePaint.
It uses a 2D-discrete wavelet transform (DWT) for spatial and multi-resolution token-mixing along with convolutional layers.
Our model even outperforms current GAN-based architectures in CelebA-HQ dataset without using an adversarially trainable discriminator.
arXiv Detail & Related papers (2023-07-01T18:41:34Z) - Accurate Image Restoration with Attention Retractable Transformer [50.05204240159985]
We propose Attention Retractable Transformer (ART) for image restoration.
ART presents both dense and sparse attention modules in the network.
We conduct extensive experiments on image super-resolution, denoising, and JPEG compression artifact reduction tasks.
arXiv Detail & Related papers (2022-10-04T07:35:01Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.