Pneumonia App: a mobile application for efficient pediatric pneumonia diagnosis using explainable convolutional neural networks (CNN)
- URL: http://arxiv.org/abs/2404.00549v1
- Date: Sun, 31 Mar 2024 03:35:43 GMT
- Title: Pneumonia App: a mobile application for efficient pediatric pneumonia diagnosis using explainable convolutional neural networks (CNN)
- Authors: Jiaming Deng, Zhenglin Chen, Minjiang Chen, Lulu Xu, Jiaqi Yang, Zhendong Luo, Peiwu Qin,
- Abstract summary: Mycoplasma pneumoniae pneumonia poses significant diagnostic challenges in pediatric healthcare.
We introduce PneumoniaAPP, a mobile application leveraging deep learning techniques for rapid MPP detection.
- Score: 3.1828174924979136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mycoplasma pneumoniae pneumonia (MPP) poses significant diagnostic challenges in pediatric healthcare, especially in regions like China where it's prevalent. We introduce PneumoniaAPP, a mobile application leveraging deep learning techniques for rapid MPP detection. Our approach capitalizes on convolutional neural networks (CNNs) trained on a comprehensive dataset comprising 3345 chest X-ray (CXR) images, which includes 833 CXR images revealing MPP and additionally augmented with samples from a public dataset. The CNN model achieved an accuracy of 88.20% and an AUROC of 0.9218 across all classes, with a specific accuracy of 97.64% for the mycoplasma class, as demonstrated on the testing dataset. Furthermore, we integrated explainability techniques into PneumoniaAPP to aid respiratory physicians in lung opacity localization. Our contribution extends beyond existing research by targeting pediatric MPP, emphasizing the age group of 0-12 years, and prioritizing deployment on mobile devices. This work signifies a significant advancement in pediatric pneumonia diagnosis, offering a reliable and accessible tool to alleviate diagnostic burdens in healthcare settings.
Related papers
- Diagnosis of Patients with Viral, Bacterial, and Non-Pneumonia Based on Chest X-Ray Images Using Convolutional Neural Networks [43.175400789778635]
Decision support system for the classification of patients into those without pneumonia and those with viral or bacterial pneumonia is proposed.
This is achieved by implementing transfer learning (TL) using pre-trained convolutional neural network (CNN) models on chest x-ray (CXR) images.
The performance of a series of experiments was evaluated to build a model capable of distinguishing between patients without pneumonia and those with viral or bacterial pneumonia.
arXiv Detail & Related papers (2025-03-03T16:17:37Z) - Pneumonia Detection on chest X-ray images Using Ensemble of Deep
Convolutional Neural Networks [7.232767871756102]
This paper presents a computer-aided classification of pneumonia, coined as Ensemble Learning (EL), to simplify the diagnosis process on chest X-ray images.
Our proposal is based on Convolutional Neural Network (CNN) models, which are pre-trained CNN models that have been recently employed to enhance the performance of many medical tasks instead of training CNN models from scratch.
The proposed EL approach outperforms other existing state-of-the-art methods, and it obtains an accuracy of 93.91% and a F1-Score of 93.88% on the testing phase.
arXiv Detail & Related papers (2023-12-13T08:28:21Z) - Prediction of Pneumonia and COVID-19 Using Deep Neural Networks [0.0]
We propose machine-learning techniques for predicting Pneumonia from chest X-ray images.
DenseNet121 outperforms other models, achieving an accuracy rate of 99.58%.
arXiv Detail & Related papers (2023-08-20T21:26:37Z) - An Adaptive and Altruistic PSO-based Deep Feature Selection Method for
Pneumonia Detection from Chest X-Rays [28.656853454251426]
Pneumonia is one of the major reasons for child mortality especially in income-deprived regions of the world.
Computer-aided based diagnosis (CAD) systems can be used in such countries due to their lower operating costs than professional medical experts.
We propose a CAD system for Pneumonia detection from Chest X-rays, using the concepts of deep learning and a meta-heuristic algorithm.
arXiv Detail & Related papers (2022-08-06T18:20:50Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - Artificial Intelligence Enhanced Rapid and Efficient Diagnosis of
Mycoplasma Pneumoniae Pneumonia in Children Patients [12.952432973738654]
We use logistic regression, decision tree (DT), gradient boosted decision tree (GBDT), support vector machine (SVM) and multilayer perceptron (MLP) as machine learning models.
The classification task was carried out after applying the preprocessing procedure to the MPP dataset.
The most efficient results are obtained by GBDT. It provides the best performance with an accuracy of 93.7%.
arXiv Detail & Related papers (2021-02-20T08:14:30Z) - An ensemble-based approach by fine-tuning the deep transfer learning
models to classify pneumonia from chest X-ray images [0.0]
More than 250,000 individuals in the United States, mainly adults, are diagnosed with pneumonia each year, and 50,000 die from the disease.
It is not uncommon to overlook pneumonia detection for a well-trained radiologist, which triggers the need for improvement in the diagnosis's accuracy.
We trained, fine-tuned the state-of-the-art deep learning models such as InceptionResNet, MobileNetV2, Xception, DenseNet201, and ResNet152V2 to classify pneumonia accurately.
arXiv Detail & Related papers (2020-11-11T04:50:06Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.