CodeBenchGen: Creating Scalable Execution-based Code Generation Benchmarks
- URL: http://arxiv.org/abs/2404.00566v4
- Date: Wed, 02 Oct 2024 23:38:34 GMT
- Title: CodeBenchGen: Creating Scalable Execution-based Code Generation Benchmarks
- Authors: Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, Daniel Fried, Carolyn Rose,
- Abstract summary: We present CodeBenchGen, a framework to create scalable execution-based benchmarks from naturally occurring code sources.
Specifically, we leverage a large language model (LLM) to sandbox arbitrary pieces of code into evaluation examples.
To demonstrate the solvability of examples in Exec-CSN, we present a human study demonstrating that 81.3% of the examples can be solved by humans.
- Score: 35.68087697258125
- License:
- Abstract: To adequately test modern code generation systems, evaluation benchmarks must execute and test the code generated by the system. However, these execution and testing requirements have largely limited benchmarks to settings where code is easily executable or has human-written tests. To facilitate evaluation of code generation systems across diverse scenarios, we present CodeBenchGen, a framework to create scalable execution-based benchmarks from naturally occurring code sources. Specifically, we leverage a large language model (LLM) to sandbox arbitrary pieces of code into evaluation examples, including test cases for execution-based evaluation. We illustrate the usefulness of our framework by creating a dataset, Exec-CSN, which includes 1,931 examples involving 293 libraries converted from code in 367 GitHub repositories taken from the Code- SearchNet dataset. To demonstrate the solvability of examples in Exec-CSN, we present a human study demonstrating that 81.3% of the examples can be solved by humans and 61% are rated as "requires effort to solve". We conduct code generation experiments on open-source and proprietary models and analyze the performance of both humans and models. We provide code and data at: https://github.com/yiqingxyq/CodeBenchGen.
Related papers
- DA-Code: Agent Data Science Code Generation Benchmark for Large Language Models [36.266383541354294]
This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks.
Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks.
Third, to solve the tasks, the models must utilize complex data science programming languages, to perform intricate data processing and derive the answers.
arXiv Detail & Related papers (2024-10-09T18:00:05Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - ComplexCodeEval: A Benchmark for Evaluating Large Code Models on More Complex Code [29.178248778212588]
ComplexCodeEval is a benchmark designed to assess large language models (LLMs) in various development tasks.
It includes 3,897 Java samples and 7,184 Python samples from high-star GitHub repositories.
arXiv Detail & Related papers (2024-09-16T13:43:04Z) - RepoMasterEval: Evaluating Code Completion via Real-World Repositories [12.176098357240095]
RepoMasterEval is a novel benchmark for evaluating code completion models constructed from real-world Python and TypeScript repositories.
To improve test accuracy of model generated code, we employ mutation testing to measure the effectiveness of the test cases.
Our empirical evaluation on 6 state-of-the-art models shows that test argumentation is critical in improving the accuracy of the benchmark.
arXiv Detail & Related papers (2024-08-07T03:06:57Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.
We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.
We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z) - Execution-based Evaluation for Data Science Code Generation Models [97.96608263010913]
We introduce ExeDS, an evaluation dataset for execution evaluation for data science code generation tasks.
ExeDS contains a set of 534 problems from Jupyter Notebooks, each consisting of code context, task description, reference program, and desired execution output.
We evaluate the execution performance of five state-of-the-art code generation models that have achieved high surface-form evaluation scores.
arXiv Detail & Related papers (2022-11-17T07:04:11Z) - CodeT: Code Generation with Generated Tests [49.622590050797236]
We explore the use of pre-trained language models to automatically generate test cases.
CodeT executes the code solutions using the generated test cases, and then chooses the best solution.
We evaluate CodeT on five different pre-trained models with both HumanEval and MBPP benchmarks.
arXiv Detail & Related papers (2022-07-21T10:18:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.