Weak Distribution Detectors Lead to Stronger Generalizability of Vision-Language Prompt Tuning
- URL: http://arxiv.org/abs/2404.00603v1
- Date: Sun, 31 Mar 2024 08:28:42 GMT
- Title: Weak Distribution Detectors Lead to Stronger Generalizability of Vision-Language Prompt Tuning
- Authors: Kun Ding, Haojian Zhang, Qiang Yu, Ying Wang, Shiming Xiang, Chunhong Pan,
- Abstract summary: We propose a method for boosting the generalization ability of pre-trained vision-language models (VLMs)
The idea is realized by exploiting out-of-distribution (OOD) detection to predict whether a sample belongs to a base distribution or a novel distribution.
With the help of OOD detectors, the harmonic mean of CoOp and ProGrad increase by 2.6 and 1.5 percentage points over 11 recognition datasets in the base-to-novel setting.
- Score: 44.34372470957298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a generalized method for boosting the generalization ability of pre-trained vision-language models (VLMs) while fine-tuning on downstream few-shot tasks. The idea is realized by exploiting out-of-distribution (OOD) detection to predict whether a sample belongs to a base distribution or a novel distribution and then using the score generated by a dedicated competition based scoring function to fuse the zero-shot and few-shot classifier. The fused classifier is dynamic, which will bias towards the zero-shot classifier if a sample is more likely from the distribution pre-trained on, leading to improved base-to-novel generalization ability. Our method is performed only in test stage, which is applicable to boost existing methods without time-consuming re-training. Extensive experiments show that even weak distribution detectors can still improve VLMs' generalization ability. Specifically, with the help of OOD detectors, the harmonic mean of CoOp and ProGrad increase by 2.6 and 1.5 percentage points over 11 recognition datasets in the base-to-novel setting.
Related papers
- PromptSync: Bridging Domain Gaps in Vision-Language Models through Class-Aware Prototype Alignment and Discrimination [14.50214193838818]
A zero-shot generalization in vision-language (V-L) models such as CLIP has spurred their widespread adoption.
Previous methods have employed test-time prompt tuning to adapt the model to unseen domains, but they overlooked the issue of imbalanced class distributions.
In this study, we employ class-aware prototype alignment weighted by mean class probabilities obtained for a test sample and filtered augmented views.
arXiv Detail & Related papers (2024-04-11T07:26:00Z) - Distributionally Robust Post-hoc Classifiers under Prior Shifts [31.237674771958165]
We investigate the problem of training models that are robust to shifts caused by changes in the distribution of class-priors or group-priors.
We present an extremely lightweight post-hoc approach that performs scaling adjustments to predictions from a pre-trained model.
arXiv Detail & Related papers (2023-09-16T00:54:57Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
In few-shot object detection (FSOD), the two-step training paradigm is widely adopted to mitigate the severe sample imbalance.
Unfortunately, the extreme data scarcity aggravates the proposal distribution bias, hindering the RoI head from evolving toward novel classes.
We introduce a simple yet effective proposal distribution calibration (PDC) approach to neatly enhance the localization and classification abilities of the RoI head.
arXiv Detail & Related papers (2022-12-15T05:09:11Z) - Learnable Distribution Calibration for Few-Shot Class-Incremental
Learning [122.2241120474278]
Few-shot class-incremental learning (FSCIL) faces challenges of memorizing old class distributions and estimating new class distributions given few training samples.
We propose a learnable distribution calibration (LDC) approach, with the aim to systematically solve these two challenges using a unified framework.
arXiv Detail & Related papers (2022-10-01T09:40:26Z) - ProBoost: a Boosting Method for Probabilistic Classifiers [55.970609838687864]
ProBoost is a new boosting algorithm for probabilistic classifiers.
It uses the uncertainty of each training sample to determine the most challenging/uncertain ones.
It produces a sequence that progressively focuses on the samples found to have the highest uncertainty.
arXiv Detail & Related papers (2022-09-04T12:49:20Z) - Open-Sampling: Exploring Out-of-Distribution data for Re-balancing
Long-tailed datasets [24.551465814633325]
Deep neural networks usually perform poorly when the training dataset suffers from extreme class imbalance.
Recent studies found that directly training with out-of-distribution data in a semi-supervised manner would harm the generalization performance.
We propose a novel method called Open-sampling, which utilizes open-set noisy labels to re-balance the class priors of the training dataset.
arXiv Detail & Related papers (2022-06-17T14:29:52Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
We formulate a method that learns a finite set of statistics from each return distribution via neural networks.
Our method can be interpreted as implicitly matching all orders of moments between a return distribution and its Bellman target.
Experiments on the suite of Atari games show that our method outperforms the standard distributional RL baselines.
arXiv Detail & Related papers (2020-07-24T05:18:17Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.