Prompt Learning via Meta-Regularization
- URL: http://arxiv.org/abs/2404.00851v1
- Date: Mon, 1 Apr 2024 01:42:23 GMT
- Title: Prompt Learning via Meta-Regularization
- Authors: Jinyoung Park, Juyeon Ko, Hyunwoo J. Kim,
- Abstract summary: We propose a Prompt Meta-Regularization (ProMetaR) to improve the generalizability of prompt learning for vision-language models.
ProMetaR meta-learns both the regularizer and the soft prompts to harness the task-specific knowledge from the downstream tasks and task-agnostic general knowledge from the vision-language models.
- Score: 18.518214936430816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained vision-language models have shown impressive success on various computer vision tasks with their zero-shot generalizability. Recently, prompt learning approaches have been explored to efficiently and effectively adapt the vision-language models to a variety of downstream tasks. However, most existing prompt learning methods suffer from task overfitting since the general knowledge of the pre-trained vision language models is forgotten while the prompts are finetuned on a small data set from a specific target task. To address this issue, we propose a Prompt Meta-Regularization (ProMetaR) to improve the generalizability of prompt learning for vision-language models. Specifically, ProMetaR meta-learns both the regularizer and the soft prompts to harness the task-specific knowledge from the downstream tasks and task-agnostic general knowledge from the vision-language models. Further, ProMetaR augments the task to generate multiple virtual tasks to alleviate the meta-overfitting. In addition, we provide the analysis to comprehend how ProMetaR improves the generalizability of prompt tuning in the perspective of the gradient alignment. Our extensive experiments demonstrate that our ProMetaR improves the generalizability of conventional prompt learning methods under base-to-base/base-to-new and domain generalization settings. The code of ProMetaR is available at https://github.com/mlvlab/ProMetaR.
Related papers
- Vision-Language Models Provide Promptable Representations for Reinforcement Learning [67.40524195671479]
We propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied reinforcement learning (RL)
We show that our approach can use chain-of-thought prompting to produce representations of common-sense semantic reasoning, improving policy performance in novel scenes by 1.5 times.
arXiv Detail & Related papers (2024-02-05T00:48:56Z) - Meta Omnium: A Benchmark for General-Purpose Learning-to-Learn [15.0841751679151]
We introduce Meta Omnium, a dataset-of-datasets spanning multiple vision tasks.
We analyze their ability to generalize across tasks and to transfer knowledge between them.
arXiv Detail & Related papers (2023-05-12T17:25:19Z) - Self-supervised Meta-Prompt Learning with Meta-Gradient Regularization
for Few-shot Generalization [40.45470744120691]
Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER)
This paper proposes a novel Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER)
arXiv Detail & Related papers (2023-03-22T05:04:21Z) - Meta Learning to Bridge Vision and Language Models for Multimodal
Few-Shot Learning [38.37682598345653]
We introduce a multimodal meta-learning approach to bridge the gap between vision and language models.
We define a meta-mapper network, acting as a meta-learner, to efficiently bridge frozen large-scale vision and language models.
We evaluate our approach on recently proposed multimodal few-shot benchmarks, measuring how rapidly the model can bind novel visual concepts to words.
arXiv Detail & Related papers (2023-02-28T17:46:18Z) - Learning to Initialize: Can Meta Learning Improve Cross-task
Generalization in Prompt Tuning? [37.522581151997734]
Prompt tuning (PT) which only tunes the embeddings of an additional sequence of tokens per task, has shown remarkable performance in few-shot learning.
We study meta prompt tuning (MPT) to explore how meta-learning can help improve (if it can) cross-task generalization.
arXiv Detail & Related papers (2023-02-16T08:37:22Z) - Multitask Vision-Language Prompt Tuning [103.5967011236282]
We propose multitask vision-language prompt tuning (MV)
MV incorporates cross-task knowledge into prompt tuning for vision-language models.
Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods.
arXiv Detail & Related papers (2022-11-21T18:41:44Z) - Boosting Natural Language Generation from Instructions with
Meta-Learning [43.64522457686405]
Recent work has shown that language models (LMs) trained with multi-task.
textitinstructional learning (MTIL) can solve diverse NLP.
tasks with improved performance compared to prompt tuning.
In this paper we investigate whether meta-learning applied to MTIL can further improve generalization to unseen tasks in a zero-shot setting.
arXiv Detail & Related papers (2022-10-20T22:23:23Z) - Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation
with Large Language Models [116.25562358482962]
State-of-the-art neural language models can be used to solve ad-hoc language tasks without the need for supervised training.
PromptIDE allows users to experiment with prompt variations, visualize prompt performance, and iteratively optimize prompts.
arXiv Detail & Related papers (2022-08-16T17:17:53Z) - Learning an Explicit Hyperparameter Prediction Function Conditioned on
Tasks [62.63852372239708]
Meta learning aims to learn the learning methodology for machine learning from observed tasks, so as to generalize to new query tasks.
We interpret such learning methodology as learning an explicit hyper- parameter prediction function shared by all training tasks.
Such setting guarantees that the meta-learned learning methodology is able to flexibly fit diverse query tasks.
arXiv Detail & Related papers (2021-07-06T04:05:08Z) - Improving Generalization in Meta-learning via Task Augmentation [69.83677015207527]
We propose two task augmentation methods, including MetaMix and Channel Shuffle.
Both MetaMix and Channel Shuffle outperform state-of-the-art results by a large margin across many datasets.
arXiv Detail & Related papers (2020-07-26T01:50:42Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.