Removing Speaker Information from Speech Representation using Variable-Length Soft Pooling
- URL: http://arxiv.org/abs/2404.00856v1
- Date: Mon, 1 Apr 2024 01:49:09 GMT
- Title: Removing Speaker Information from Speech Representation using Variable-Length Soft Pooling
- Authors: Injune Hwang, Kyogu Lee,
- Abstract summary: This paper aims to remove speaker information by exploiting the structured nature of speech.
A neural network predicts these boundaries, enabling variable-length pooling for event-based representation extraction.
To confirm that the learned representation includes contents information but is independent of speaker information, the model was evaluated with libri-light's phonetic ABX task and SUPERB's speaker identification task.
- Score: 16.73336092521471
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, there have been efforts to encode the linguistic information of speech using a self-supervised framework for speech synthesis. However, predicting representations from surrounding representations can inadvertently entangle speaker information in the speech representation. This paper aims to remove speaker information by exploiting the structured nature of speech, composed of discrete units like phonemes with clear boundaries. A neural network predicts these boundaries, enabling variable-length pooling for event-based representation extraction instead of fixed-rate methods. The boundary predictor outputs a probability for the boundary between 0 and 1, making pooling soft. The model is trained to minimize the difference with the pooled representation of the data augmented by time-stretch and pitch-shift. To confirm that the learned representation includes contents information but is independent of speaker information, the model was evaluated with libri-light's phonetic ABX task and SUPERB's speaker identification task.
Related papers
- Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT [10.18337180909434]
Self-supervised speech representation learning has become essential for extracting meaningful features from untranscribed audio.
We propose a speech-only self-supervised fine-tuning approach that separates syllabic units from speaker information.
arXiv Detail & Related papers (2024-09-16T09:07:08Z) - Self-supervised Fine-tuning for Improved Content Representations by
Speaker-invariant Clustering [78.2927924732142]
We propose speaker-invariant clustering (Spin) as a novel self-supervised learning method.
Spin disentangles speaker information and preserves content representations with just 45 minutes of fine-tuning on a single GPU.
arXiv Detail & Related papers (2023-05-18T15:59:36Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
A novel point of the proposed method is the direct use of the SSL model to obtain embedding vectors from speech representations trained with a large amount of data.
The disentangled embeddings will enable us to achieve better reproduction performance for unseen speakers and rhythm transfer conditioned by different speeches.
arXiv Detail & Related papers (2023-04-24T10:15:58Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
Existing systems ignore the correlation between prosody and language content, leading to degradation of naturalness in converted speech.
We devise a cascaded modular system leveraging self-supervised discrete speech units as language representation.
Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability.
arXiv Detail & Related papers (2022-11-12T00:54:09Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
We propose a cross-modal Speech and Language Model (SpeechLM) to align speech and text pre-training with a pre-defined unified representation.
Specifically, we introduce two alternative discrete tokenizers to bridge the speech and text modalities.
We evaluate SpeechLM on various spoken language processing tasks including speech recognition, speech translation, and universal representation evaluation framework SUPERB.
arXiv Detail & Related papers (2022-09-30T09:12:10Z) - ESSumm: Extractive Speech Summarization from Untranscribed Meeting [7.309214379395552]
We propose a novel architecture for direct extractive speech-to-speech summarization, ESSumm.
We leverage the off-the-shelf self-supervised convolutional neural network to extract the deep speech features from raw audio.
Our approach automatically predicts the optimal sequence of speech segments that capture the key information with a target summary length.
arXiv Detail & Related papers (2022-09-14T20:13:15Z) - Learning De-identified Representations of Prosody from Raw Audio [7.025418443146435]
We propose a method for learning de-identified prosody representations from raw audio using a contrastive self-supervised signal.
We exploit the natural structure of prosody to minimize timbral information and decouple prosody from speaker representations.
arXiv Detail & Related papers (2021-07-17T14:37:25Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation.
We propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead.
When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass.
arXiv Detail & Related papers (2021-07-12T17:40:43Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
Spoken language understanding requires a model to analyze input acoustic signal to understand its linguistic content and make predictions.
Various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text.
We propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules.
arXiv Detail & Related papers (2020-10-05T19:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.