HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach
- URL: http://arxiv.org/abs/2404.01094v3
- Date: Sat, 25 May 2024 10:35:15 GMT
- Title: HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach
- Authors: Maxim Nikolaev, Mikhail Kuznetsov, Dmitry Vetrov, Aibek Alanov,
- Abstract summary: We present the HairFast model, which achieves high resolution, near real-time performance, and superior reconstruction.
Our solution includes a new architecture operating in the FS latent space of StyleGAN.
In the most difficult scenario of transferring both shape and color of a hairstyle from different images, our method performs in less than a second on the Nvidia V100.
- Score: 3.737361598712633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our paper addresses the complex task of transferring a hairstyle from a reference image to an input photo for virtual hair try-on. This task is challenging due to the need to adapt to various photo poses, the sensitivity of hairstyles, and the lack of objective metrics. The current state of the art hairstyle transfer methods use an optimization process for different parts of the approach, making them inexcusably slow. At the same time, faster encoder-based models are of very low quality because they either operate in StyleGAN's W+ space or use other low-dimensional image generators. Additionally, both approaches have a problem with hairstyle transfer when the source pose is very different from the target pose, because they either don't consider the pose at all or deal with it inefficiently. In our paper, we present the HairFast model, which uniquely solves these problems and achieves high resolution, near real-time performance, and superior reconstruction compared to optimization problem-based methods. Our solution includes a new architecture operating in the FS latent space of StyleGAN, an enhanced inpainting approach, and improved encoders for better alignment, color transfer, and a new encoder for post-processing. The effectiveness of our approach is demonstrated on realism metrics after random hairstyle transfer and reconstruction when the original hairstyle is transferred. In the most difficult scenario of transferring both shape and color of a hairstyle from different images, our method performs in less than a second on the Nvidia V100. Our code is available at https://github.com/AIRI-Institute/HairFastGAN.
Related papers
- Realistic and Efficient Face Swapping: A Unified Approach with Diffusion Models [69.50286698375386]
We propose a novel approach that better harnesses diffusion models for face-swapping.
We introduce a mask shuffling technique during inpainting training, which allows us to create a so-called universal model for swapping.
Ours is a relatively unified approach and so it is resilient to errors in other off-the-shelf models.
arXiv Detail & Related papers (2024-09-11T13:43:53Z) - Stable-Hair: Real-World Hair Transfer via Diffusion Model [23.500330976568296]
Current hair transfer methods struggle to handle diverse and intricate hairstyles, thus limiting their applicability in real-world scenarios.
We propose a novel diffusion-based hair transfer framework, named textitStable-Hair, which robustly transfers a wide range of real-world hairstyles onto user-provided faces for virtual hair try-on.
arXiv Detail & Related papers (2024-07-19T07:14:23Z) - StyleGAN Salon: Multi-View Latent Optimization for Pose-Invariant
Hairstyle Transfer [8.712040236361926]
The paper seeks to transfer the hairstyle of a reference image to an input photo for virtual hair try-on.
We propose a multi-view optimization framework that uses "two different views" of reference composites to semantically guide occluded or ambiguous regions.
Our framework produces high-quality results and outperforms prior work in a user study that consists of significantly more challenging hair transfer scenarios.
arXiv Detail & Related papers (2023-04-05T20:49:55Z) - Efficient Hair Style Transfer with Generative Adversarial Networks [7.312180925669325]
We propose a novel hairstyle transfer method, called EHGAN, which reduces computational costs to enable real-time processing.
To achieve this goal, we train an encoder and a low-resolution generator to transfer hairstyle and then, increase the resolution of results with a pre-trained super-resolution model.
EHGAN needs around 2.7 times and over 10,000 times less time consumption than the state-of-the-art MichiGAN and LOHO methods respectively.
arXiv Detail & Related papers (2022-10-22T18:56:16Z) - Style Your Hair: Latent Optimization for Pose-Invariant Hairstyle
Transfer via Local-Style-Aware Hair Alignment [29.782276472922398]
We propose a pose-invariant hairstyle transfer model equipped with latent optimization and a newly presented local-style-matching loss.
Our model has strengths in transferring a hairstyle under larger pose differences and preserving local hairstyle textures.
arXiv Detail & Related papers (2022-08-16T14:23:54Z) - HairFIT: Pose-Invariant Hairstyle Transfer via Flow-based Hair Alignment
and Semantic-Region-Aware Inpainting [26.688276902813495]
We propose a novel framework for pose-invariant hairstyle transfer, HairFIT.
Our model consists of two stages: 1) flow-based hair alignment and 2) hair synthesis.
Our SIM estimator divides the occluded regions in the source image into different semantic regions to reflect their distinct features during the inpainting.
arXiv Detail & Related papers (2022-06-17T06:55:20Z) - Overparameterization Improves StyleGAN Inversion [66.8300251627992]
Existing inversion approaches obtain promising yet imperfect results.
We show that this allows us to obtain near-perfect image reconstruction without the need for encoders.
Our approach also retains editability, which we demonstrate by realistically interpolating between images.
arXiv Detail & Related papers (2022-05-12T18:42:43Z) - HairCLIP: Design Your Hair by Text and Reference Image [100.85116679883724]
This paper proposes a new hair editing interaction mode, which enables manipulating hair attributes individually or jointly.
We encode the image and text conditions in a shared embedding space and propose a unified hair editing framework.
With the carefully designed network structures and loss functions, our framework can perform high-quality hair editing.
arXiv Detail & Related papers (2021-12-09T18:59:58Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
Controllable person image generation aims to produce realistic human images with desirable attributes.
We introduce a novel Spatially-Adaptive Warped Normalization (SAWN), which integrates a learned flow-field to warp modulation parameters.
We propose a novel self-training part replacement strategy to refine the pretrained model for the texture-transfer task.
arXiv Detail & Related papers (2021-05-31T07:07:44Z) - MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait
Editing [122.82964863607938]
MichiGAN is a novel conditional image generation method for interactive portrait hair manipulation.
We provide user control over every major hair visual factor, including shape, structure, appearance, and background.
We also build an interactive portrait hair editing system that enables straightforward manipulation of hair by projecting intuitive and high-level user inputs.
arXiv Detail & Related papers (2020-10-30T17:59:10Z) - Real-time Universal Style Transfer on High-resolution Images via
Zero-channel Pruning [74.09149955786367]
ArtNet can achieve universal, real-time, and high-quality style transfer on high-resolution images simultaneously.
By using ArtNet and S2, our method is 2.3 to 107.4 times faster than state-of-the-art approaches.
arXiv Detail & Related papers (2020-06-16T09:50:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.