Motion Blur Decomposition with Cross-shutter Guidance
- URL: http://arxiv.org/abs/2404.01120v1
- Date: Mon, 1 Apr 2024 13:55:40 GMT
- Title: Motion Blur Decomposition with Cross-shutter Guidance
- Authors: Xiang Ji, Haiyang Jiang, Yinqiang Zheng,
- Abstract summary: Motion blur is an artifact under insufficient illumination where exposure time has to be prolonged so as to collect more photons for a bright enough image.
Recent researches have aimed at decomposing a blurry image into multiple sharp images with spatial and temporal coherence.
We propose to utilize the ordered scanline-wise delay in a rolling shutter image to robustify motion decomposition of a single blurry image.
- Score: 33.72961622720793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion blur is a frequently observed image artifact, especially under insufficient illumination where exposure time has to be prolonged so as to collect more photons for a bright enough image. Rather than simply removing such blurring effects, recent researches have aimed at decomposing a blurry image into multiple sharp images with spatial and temporal coherence. Since motion blur decomposition itself is highly ambiguous, priors from neighbouring frames or human annotation are usually needed for motion disambiguation. In this paper, inspired by the complementary exposure characteristics of a global shutter (GS) camera and a rolling shutter (RS) camera, we propose to utilize the ordered scanline-wise delay in a rolling shutter image to robustify motion decomposition of a single blurry image. To evaluate this novel dual imaging setting, we construct a triaxial system to collect realistic data, as well as a deep network architecture that explicitly addresses temporal and contextual information through reciprocal branches for cross-shutter motion blur decomposition. Experiment results have verified the effectiveness of our proposed algorithm, as well as the validity of our dual imaging setting.
Related papers
- ExBluRF: Efficient Radiance Fields for Extreme Motion Blurred Images [58.24910105459957]
We present ExBluRF, a novel view synthesis method for extreme motion blurred images.
Our approach consists of two main components: 6-DOF camera trajectory-based motion blur formulation and voxel-based radiance fields.
Compared with the existing works, our approach restores much sharper 3D scenes with the order of 10 times less training time and GPU memory consumption.
arXiv Detail & Related papers (2023-09-16T11:17:25Z) - Recovering Continuous Scene Dynamics from A Single Blurry Image with
Events [58.7185835546638]
An Implicit Video Function (IVF) is learned to represent a single motion blurred image with concurrent events.
A dual attention transformer is proposed to efficiently leverage merits from both modalities.
The proposed network is trained only with the supervision of ground-truth images of limited referenced timestamps.
arXiv Detail & Related papers (2023-04-05T18:44:17Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
In this work, we aim ambitiously for a more realistic and challenging task - joint video multi-frame and deblurring under unknown exposure time.
We first adopt a variant of supervised contrastive learning to construct an exposure-aware representation from input blurred frames.
We then build our video reconstruction network upon the exposure and motion representation by progressive exposure-adaptive convolution and motion refinement.
arXiv Detail & Related papers (2023-03-27T09:43:42Z) - Learning Spatially Varying Pixel Exposures for Motion Deblurring [49.07867902677453]
We present a novel approach of leveraging spatially varying pixel exposures for motion deblurring.
Our work illustrates the promising role that focal-plane sensor--processors can play in the future of computational imaging.
arXiv Detail & Related papers (2022-04-14T23:41:49Z) - A Method For Adding Motion-Blur on Arbitrary Objects By using
Auto-Segmentation and Color Compensation Techniques [6.982738885923204]
In this paper, an unified framework to add motion blur on per-object basis is proposed.
In the method, multiple frames are captured without motion blur and they are accumulated to create motion blur on target objects.
arXiv Detail & Related papers (2021-09-22T05:52:27Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
We present a novel framework for deblurring, interpolating and extrapolating sharp frames from a motion-blurred video in an end-to-end manner.
To ensure temporal coherence across predicted frames and address potential temporal ambiguity, we propose a simple, yet effective flow-based rule.
arXiv Detail & Related papers (2021-03-04T12:18:25Z) - Exposure Trajectory Recovery from Motion Blur [90.75092808213371]
Motion blur in dynamic scenes is an important yet challenging research topic.
In this paper, we define exposure trajectories, which represent the motion information contained in a blurry image.
A novel motion offset estimation framework is proposed to model pixel-wise displacements of the latent sharp image.
arXiv Detail & Related papers (2020-10-06T05:23:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.