Uncovering the Text Embedding in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2404.01154v1
- Date: Mon, 1 Apr 2024 14:59:13 GMT
- Title: Uncovering the Text Embedding in Text-to-Image Diffusion Models
- Authors: Hu Yu, Hao Luo, Fan Wang, Feng Zhao,
- Abstract summary: Text embedding, as the pivotal intermediary between text and images, remains relatively underexplored.
We identify two critical insights regarding the importance of per-word embedding and their contextual correlations within text embedding.
We find that text embedding inherently possesses diverse semantic potentials, and further reveal this property through the lens of singular value decomposition.
- Score: 17.108496821429494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The correspondence between input text and the generated image exhibits opacity, wherein minor textual modifications can induce substantial deviations in the generated image. While, text embedding, as the pivotal intermediary between text and images, remains relatively underexplored. In this paper, we address this research gap by delving into the text embedding space, unleashing its capacity for controllable image editing and explicable semantic direction attributes within a learning-free framework. Specifically, we identify two critical insights regarding the importance of per-word embedding and their contextual correlations within text embedding, providing instructive principles for learning-free image editing. Additionally, we find that text embedding inherently possesses diverse semantic potentials, and further reveal this property through the lens of singular value decomposition (SVD). These uncovered properties offer practical utility for image editing and semantic discovery. More importantly, we expect the in-depth analyses and findings of the text embedding can enhance the understanding of text-to-image diffusion models.
Related papers
- Semantic Token Reweighting for Interpretable and Controllable Text Embeddings in CLIP [46.53595526049201]
A text encoder within Vision-Language Models (VLMs) like CLIP plays a crucial role in translating textual input into an embedding space shared with images.
We propose a framework of Semantic Token Reweighting to build Interpretable text embeddings (SToRI)
SToRI refines the text encoding process in CLIP by differentially weighting semantic elements based on contextual importance.
arXiv Detail & Related papers (2024-10-11T02:42:13Z) - RealCustom++: Representing Images as Real-Word for Real-Time Customization [80.04828124070418]
Text-to-image customization aims to synthesize new images that align with both text semantics and subject appearance.
Existing works follow the pseudo-word paradigm, which involves representing given subjects as pseudo-words.
We propose a novel real-words paradigm termed RealCustom++ that instead represents subjects as non-conflict real words.
arXiv Detail & Related papers (2024-08-19T07:15:44Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
We propose a framework to learn the proper textual descriptions for diffusion models through prompt learning.
Our method can effectively learn the prompts to improve the matches between the input text and the generated images.
arXiv Detail & Related papers (2024-01-12T03:46:29Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions.
We propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations.
arXiv Detail & Related papers (2023-12-29T07:59:07Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions.
We propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts.
arXiv Detail & Related papers (2023-07-18T08:23:46Z) - Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [58.71128866226768]
Recent text-to-image generation methods have incrementally improved the generated image fidelity and text relevancy.
We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene.
Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of 512x512 pixels.
arXiv Detail & Related papers (2022-03-24T15:44:50Z) - Self-Supervised Image-to-Text and Text-to-Image Synthesis [23.587581181330123]
We propose a novel self-supervised deep learning based approach towards learning the cross-modal embedding spaces.
In our approach, we first obtain dense vector representations of images using StackGAN-based autoencoder model and also dense vector representations on sentence-level utilizing LSTM based text-autoencoder.
arXiv Detail & Related papers (2021-12-09T13:54:56Z) - Multi-Modal Reasoning Graph for Scene-Text Based Fine-Grained Image
Classification and Retrieval [8.317191999275536]
This paper focuses on leveraging multi-modal content in the form of visual and textual cues to tackle the task of fine-grained image classification and retrieval.
We employ a Graph Convolutional Network to perform multi-modal reasoning and obtain relationship-enhanced features by learning a common semantic space between salient objects and text found in an image.
arXiv Detail & Related papers (2020-09-21T12:31:42Z) - Image-to-Image Translation with Text Guidance [139.41321867508722]
The goal of this paper is to embed controllable factors, i.e., natural language descriptions, into image-to-image translation with generative adversarial networks.
We propose four key components: (1) the implementation of part-of-speech tagging to filter out non-semantic words in the given description, (2) the adoption of an affine combination module to effectively fuse different modality text and image features, and (3) a novel refined multi-stage architecture to strengthen the differential ability of discriminators and the rectification ability of generators.
arXiv Detail & Related papers (2020-02-12T21:09:15Z) - Fine-grained Image Classification and Retrieval by Combining Visual and
Locally Pooled Textual Features [8.317191999275536]
In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks.
In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities.
arXiv Detail & Related papers (2020-01-14T12:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.