Learning to Solve Job Shop Scheduling under Uncertainty
- URL: http://arxiv.org/abs/2404.01308v1
- Date: Mon, 4 Mar 2024 08:38:55 GMT
- Title: Learning to Solve Job Shop Scheduling under Uncertainty
- Authors: Guillaume Infantes, Stéphanie Roussel, Pierre Pereira, Antoine Jacquet, Emmanuel Benazera,
- Abstract summary: Job-Shop Scheduling Problem (JSSP) is a optimization problem where tasks need to be scheduled on machines in order to minimize criteria such as makespan or delay.
This paper introduces a new approach that leverages Deep Reinforcement Learning (DRL) techniques to search for robust solutions.
- Score: 1.3002317221601185
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Job-Shop Scheduling Problem (JSSP) is a combinatorial optimization problem where tasks need to be scheduled on machines in order to minimize criteria such as makespan or delay. To address more realistic scenarios, we associate a probability distribution with the duration of each task. Our objective is to generate a robust schedule, i.e. that minimizes the average makespan. This paper introduces a new approach that leverages Deep Reinforcement Learning (DRL) techniques to search for robust solutions, emphasizing JSSPs with uncertain durations. Key contributions of this research include: (1) advancements in DRL applications to JSSPs, enhancing generalization and scalability, (2) a novel method for addressing JSSPs with uncertain durations. The Wheatley approach, which integrates Graph Neural Networks (GNNs) and DRL, is made publicly available for further research and applications.
Related papers
- Decision Transformer for Enhancing Neural Local Search on the Job Shop Scheduling Problem [10.316443594063173]
Job shop scheduling problem (JSSP) and its solution algorithms have been of enduring interest in both academia and industry for decades.
In recent years, machine learning (ML) is playing an increasingly important role in advancing existing and building new solutions for the JSSP, aiming to find better solutions in shorter times.
We build on top of a state-of-the-art deep reinforcement learning (DRL) agent, called Neural Local Search (NLS), which can efficiently and effectively control a large local neighborhood search on the JSSP.
arXiv Detail & Related papers (2024-09-04T13:33:38Z) - LLMs can Schedule [3.435169201271934]
Job shop scheduling problem (JSSP) remains a significant hurdle in optimizing production processes.
This paper explores the potential of Large Language Models (LLMs) for JSSP.
Surprisingly, our findings demonstrate that LLM-based scheduling can achieve performance comparable to other neural approaches.
arXiv Detail & Related papers (2024-08-13T15:53:58Z) - A Reinforcement Learning Approach for Scheduling Problems With Improved
Generalization Through Order Swapping [0.0]
JSSP falls into the category of NP-hard COP, in which solving the problem through exhaustive search becomes unfeasible.
In recent years, the research towards using DRL to solve COP has gained interest and has shown promising results in terms of solution quality and computational efficiency.
In particular, we employ the PPO algorithm that adopts the policy-gradient paradigm that is found to perform well in the constrained dispatching of jobs.
arXiv Detail & Related papers (2023-02-27T16:45:04Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - An actor-critic algorithm with policy gradients to solve the job shop
scheduling problem using deep double recurrent agents [1.3812010983144802]
We propose a deep reinforcement learning methodology for the job shop scheduling problem (JSSP)
The aim is to build up a greedy-like able to learn on some distribution of JSSP instances, different in the number of jobs and machines.
As expected, the model can generalize, to some extent, to larger problems or instances originated by a different distribution from the one used in training.
arXiv Detail & Related papers (2021-10-18T07:55:39Z) - Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep
Learning Method [44.4747903763245]
The Jobs shop Scheduling Problem (JSP) is a canonical optimization problem that is routinely solved for a variety of industrial purposes.
The problem is NP-hard and computationally challenging even for medium-sized instances.
This paper explores a deep learning approach to deliver efficient and accurate approximations to the problem.
arXiv Detail & Related papers (2021-10-12T21:15:19Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.