Developing Safe and Responsible Large Language Model : Can We Balance Bias Reduction and Language Understanding in Large Language Models?
- URL: http://arxiv.org/abs/2404.01399v5
- Date: Sun, 05 Jan 2025 22:23:35 GMT
- Title: Developing Safe and Responsible Large Language Model : Can We Balance Bias Reduction and Language Understanding in Large Language Models?
- Authors: Shaina Raza, Oluwanifemi Bamgbose, Shardul Ghuge, Fatemeh Tavakol, Deepak John Reji, Syed Raza Bashir,
- Abstract summary: This study explores whether Large Language Models can produce safe, unbiased outputs without sacrificing knowledge or comprehension.
We introduce the Safe and Responsible Large Language Model (textbfSR$_textLLM$)
Experiments on our specialized dataset and out-of-distribution test sets reveal that textbfSR$_textLLM$ effectively reduces biases while preserving knowledge integrity.
- Score: 2.089112028396727
- License:
- Abstract: Large Language Models (LLMs) have advanced various Natural Language Processing (NLP) tasks, such as text generation and translation, among others. However, these models often generate texts that can perpetuate biases. Existing approaches to mitigate these biases usually compromise knowledge retention. This study explores whether LLMs can produce safe, unbiased outputs without sacrificing knowledge or comprehension. We introduce the Safe and Responsible Large Language Model (\textbf{SR}$_{\text{LLM}}$), which has been instruction fine-tuned atop of a safe fine-tuned auto-regressive decoder-only LLM to reduce biases in generated texts. We developed a specialized dataset with examples of unsafe and corresponding safe variations to train \textbf{SR}$_{\text{LLM}}$ to identify and correct biased text. Experiments on our specialized dataset and out-of-distribution test sets reveal that \textbf{SR}$_{\text{LLM}}$ effectively reduces biases while preserving knowledge integrity. This performance surpasses that of traditional fine-tuning of smaller language models and base LLMs that merely reply on prompting techniques. Our findings demonstrate that instruction fine-tuning on custom datasets tailored for tasks such as debiasing is a highly effective strategy for minimizing bias in LLM while preserving their inherent knowledge and capabilities. The code and dataset are accessible at \href{https://github.com/shainarazavi/Safe-Responsible-LLM}{SR-LLM}
Related papers
- Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu [53.437954702561065]
In-context machine translation (MT) with large language models (LLMs) is a promising approach for low-resource MT.
This study systematically investigates how each resource and its quality affects the translation performance, with the Manchu language.
Our results indicate that high-quality dictionaries and good parallel examples are very helpful, while grammars hardly help.
arXiv Detail & Related papers (2025-02-17T14:53:49Z) - Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - Extracting Memorized Training Data via Decomposition [24.198975804570072]
We demonstrate a simple, query-based decompositional method to extract news articles from two frontier Large Language Models.
We extract at least one sentence from 73 articles, and over 20% of verbatim sentences from 6 articles.
If replicable at scale, this training data extraction methodology could expose new LLM security and safety vulnerabilities.
arXiv Detail & Related papers (2024-09-18T23:59:32Z) - Course-Correction: Safety Alignment Using Synthetic Preferences [17.897817682322053]
We introduce the textscC$2$-Eval benchmark for quantitative assessment and analyze 10 popular language models.
Using an automated pipeline, we create textscC$2$-Syn, a synthetic dataset with 750K pairwise preferences.
Experiments on 2 LLMs, textscLlama2-Chat 7B and textscQwen2 7B, show that our method effectively enhances course-correction skills without affecting general performance.
arXiv Detail & Related papers (2024-07-23T16:54:28Z) - Robustness of LLMs to Perturbations in Text [2.0670689746336]
Large language models (LLMs) have shown impressive performance, but can they handle the inevitable noise in real-world data?
This work tackles this critical question by investigating LLMs' resilience against morphological variations in text.
Our findings show that contrary to popular beliefs, generative LLMs are quiet robust to noisy perturbations in text.
arXiv Detail & Related papers (2024-07-12T04:50:17Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
We propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing.
Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs.
arXiv Detail & Related papers (2024-03-26T06:57:23Z) - TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement [26.26493253161022]
Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT)
We introduce a systematic LLM-based self-refinement translation framework, named textbfTEaR.
arXiv Detail & Related papers (2024-02-26T07:58:12Z) - On the Safety of Open-Sourced Large Language Models: Does Alignment
Really Prevent Them From Being Misused? [49.99955642001019]
We show that open-sourced, aligned large language models could be easily misguided to generate undesired content.
Our key idea is to directly manipulate the generation process of open-sourced LLMs to misguide it to generate undesired content.
arXiv Detail & Related papers (2023-10-02T19:22:01Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.