Neural Implicit Representation for Building Digital Twins of Unknown Articulated Objects
- URL: http://arxiv.org/abs/2404.01440v2
- Date: Thu, 6 Jun 2024 23:20:55 GMT
- Title: Neural Implicit Representation for Building Digital Twins of Unknown Articulated Objects
- Authors: Yijia Weng, Bowen Wen, Jonathan Tremblay, Valts Blukis, Dieter Fox, Leonidas Guibas, Stan Birchfield,
- Abstract summary: We address the problem of building digital twins of unknown articulated objects from two RGBD scans of the object at different articulation states.
Our method first reconstructs object-level shape at each state, then recovers the underlying articulation model.
It also handles more than one movable part and does not rely on any object shape or structure priors.
- Score: 42.32306418464438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of building digital twins of unknown articulated objects from two RGBD scans of the object at different articulation states. We decompose the problem into two stages, each addressing distinct aspects. Our method first reconstructs object-level shape at each state, then recovers the underlying articulation model including part segmentation and joint articulations that associate the two states. By explicitly modeling point-level correspondences and exploiting cues from images, 3D reconstructions, and kinematics, our method yields more accurate and stable results compared to prior work. It also handles more than one movable part and does not rely on any object shape or structure priors. Project page: https://github.com/NVlabs/DigitalTwinArt
Related papers
- REACTO: Reconstructing Articulated Objects from a Single Video [64.89760223391573]
We propose a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints.
Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects.
arXiv Detail & Related papers (2024-04-17T08:01:55Z) - Learning Explicit Contact for Implicit Reconstruction of Hand-held
Objects from Monocular Images [59.49985837246644]
We show how to model contacts in an explicit way to benefit the implicit reconstruction of hand-held objects.
In the first part, we propose a new subtask of directly estimating 3D hand-object contacts from a single image.
In the second part, we introduce a novel method to diffuse estimated contact states from the hand mesh surface to nearby 3D space.
arXiv Detail & Related papers (2023-05-31T17:59:26Z) - BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown
Objects [89.2314092102403]
We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence.
Our method works for arbitrary rigid objects, even when visual texture is largely absent.
arXiv Detail & Related papers (2023-03-24T17:13:49Z) - THOR-Net: End-to-end Graformer-based Realistic Two Hands and Object
Reconstruction with Self-supervision [11.653985098433841]
THOR-Net combines the power of GCNs, Transformer, and self-supervision to reconstruct two hands and an object from a single RGB image.
Our approach achieves State-of-the-art results in Hand shape estimation on the HO-3D dataset (10.0mm)
It also surpasses other methods in hand pose estimation on the challenging two hands and object (H2O) dataset by 5mm on the left-hand pose and 1 mm on the right-hand pose.
arXiv Detail & Related papers (2022-10-25T09:18:50Z) - Collaborative Learning for Hand and Object Reconstruction with
Attention-guided Graph Convolution [49.10497573378427]
Estimating the pose and shape of hands and objects under interaction finds numerous applications including augmented and virtual reality.
Our algorithm is optimisation to object models, and it learns the physical rules governing hand-object interaction.
Experiments using four widely-used benchmarks show that our framework achieves beyond state-of-the-art accuracy in 3D pose estimation, as well as recovers dense 3D hand and object shapes.
arXiv Detail & Related papers (2022-04-27T17:00:54Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
Our work aims to reconstruct hand-held objects given a single RGB image.
In contrast to prior works that typically assume known 3D templates and reduce the problem to 3D pose estimation, our work reconstructs generic hand-held object without knowing their 3D templates.
arXiv Detail & Related papers (2022-04-14T17:59:02Z) - Class-agnostic Reconstruction of Dynamic Objects from Videos [127.41336060616214]
We introduce REDO, a class-agnostic framework to REconstruct the Dynamic Objects from RGBD or calibrated videos.
We develop two novel modules. First, we introduce a canonical 4D implicit function which is pixel-aligned with aggregated temporal visual cues.
Second, we develop a 4D transformation module which captures object dynamics to support temporal propagation and aggregation.
arXiv Detail & Related papers (2021-12-03T18:57:47Z) - CoReNet: Coherent 3D scene reconstruction from a single RGB image [43.74240268086773]
We build on advances in deep learning to reconstruct the shape of a single object given only one RBG image as input.
We propose three extensions: (1) ray-traced skip connections that propagate local 2D information to the output 3D volume in a physically correct manner; (2) a hybrid 3D volume representation that enables building translation equivariant models; and (3) a reconstruction loss tailored to capture overall object geometry.
We reconstruct all objects jointly in one pass, producing a coherent reconstruction, where all objects live in a single consistent 3D coordinate frame relative to the camera and they do not intersect in 3D space.
arXiv Detail & Related papers (2020-04-27T17:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.