Modality Translation for Object Detection Adaptation Without Forgetting Prior Knowledge
- URL: http://arxiv.org/abs/2404.01492v3
- Date: Wed, 31 Jul 2024 21:50:57 GMT
- Title: Modality Translation for Object Detection Adaptation Without Forgetting Prior Knowledge
- Authors: Heitor Rapela Medeiros, Masih Aminbeidokhti, Fidel Guerrero Pena, David Latortue, Eric Granger, Marco Pedersoli,
- Abstract summary: This paper focuses on adapting a large object detection model trained on RGB images to new data extracted from IR images.
We propose Modality Translator (ModTr) as an alternative to the common approach of fine-tuning a large model to the new modality.
- Score: 11.905387325966311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common practice in deep learning involves training large neural networks on massive datasets to achieve high accuracy across various domains and tasks. While this approach works well in many application areas, it often fails drastically when processing data from a new modality with a significant distribution shift from the data used to pre-train the model. This paper focuses on adapting a large object detection model trained on RGB images to new data extracted from IR images with a substantial modality shift. We propose Modality Translator (ModTr) as an alternative to the common approach of fine-tuning a large model to the new modality. ModTr adapts the IR input image with a small transformation network trained to directly minimize the detection loss. The original RGB model can then work on the translated inputs without any further changes or fine-tuning to its parameters. Experimental results on translating from IR to RGB images on two well-known datasets show that our simple approach provides detectors that perform comparably or better than standard fine-tuning, without forgetting the knowledge of the original model. This opens the door to a more flexible and efficient service-based detection pipeline, where a unique and unaltered server, such as an RGB detector, runs constantly while being queried by different modalities, such as IR with the corresponding translations model. Our code is available at: https://github.com/heitorrapela/ModTr.
Related papers
- MiPa: Mixed Patch Infrared-Visible Modality Agnostic Object Detection [12.462709547836289]
Using multiple modalities like visible (RGB) and infrared (IR) can greatly improve the performance of a predictive task such as object detection (OD)
In this paper, we tackle a different way to employ RGB and IR modalities, where only one modality or the other is observed by a single shared vision encoder.
This work investigates how to efficiently leverage RGB and IR modalities to train a common transformer-based OD vision encoder, while countering the effects of modality imbalance.
arXiv Detail & Related papers (2024-04-29T16:42:58Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - HalluciDet: Hallucinating RGB Modality for Person Detection Through Privileged Information [12.376615603048279]
HalluciDet is an IR-RGB image translation model for object detection.
We empirically compare our approach against state-of-the-art methods for image translation and for fine-tuning on IR.
arXiv Detail & Related papers (2023-10-07T03:00:33Z) - Tensor Factorization for Leveraging Cross-Modal Knowledge in
Data-Constrained Infrared Object Detection [22.60228799622782]
Key bottleneck in object detection in IR images is lack of sufficient labeled training data.
We seek to leverage cues from the RGB modality to scale object detectors to the IR modality, while preserving model performance in the RGB modality.
We first pretrain these factor matrices on the RGB modality, for which plenty of training data are assumed to exist and then augment only a few trainable parameters for training on the IR modality to avoid over-fitting.
arXiv Detail & Related papers (2023-09-28T16:55:52Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - Self-Supervised Modality-Aware Multiple Granularity Pre-Training for
RGB-Infrared Person Re-Identification [9.624510941236837]
Modality-Aware Multiple Granularity Learning (MMGL) is a self-supervised pre-training alternative to ImageNet pre-training.
MMGL learns better representations (+6.47% Rank-1) with faster training speed (converge in few hours) and solider data efficiency (5% data size) than ImageNet pre-training.
Results suggest it generalizes well to various existing models, losses and has promising transferability across datasets.
arXiv Detail & Related papers (2021-12-12T04:40:33Z) - RGB-D Saliency Detection via Cascaded Mutual Information Minimization [122.8879596830581]
Existing RGB-D saliency detection models do not explicitly encourage RGB and depth to achieve effective multi-modal learning.
We introduce a novel multi-stage cascaded learning framework via mutual information minimization to "explicitly" model the multi-modal information between RGB image and depth data.
arXiv Detail & Related papers (2021-09-15T12:31:27Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.