Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions
- URL: http://arxiv.org/abs/2404.01812v1
- Date: Tue, 2 Apr 2024 10:15:06 GMT
- Title: Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions
- Authors: Saptarshi Dasgupta, Akshat Gupta, Shreshth Tuli, Rohan Paul,
- Abstract summary: This paper presents an approach that enables a robot to rapidly learn the complete 3D model of a given object for manipulation in unfamiliar orientations.
We use an ensemble of partially constructed NeRF models to quantify model uncertainty to determine the next action.
Our approach determines when and how to grasp and re-orient an object given its partial NeRF model and re-estimates the object pose to rectify misalignments introduced during the interaction.
- Score: 8.059133373836913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulating unseen objects is challenging without a 3D representation, as objects generally have occluded surfaces. This requires physical interaction with objects to build their internal representations. This paper presents an approach that enables a robot to rapidly learn the complete 3D model of a given object for manipulation in unfamiliar orientations. We use an ensemble of partially constructed NeRF models to quantify model uncertainty to determine the next action (a visual or re-orientation action) by optimizing informativeness and feasibility. Further, our approach determines when and how to grasp and re-orient an object given its partial NeRF model and re-estimates the object pose to rectify misalignments introduced during the interaction. Experiments with a simulated Franka Emika Robot Manipulator operating in a tabletop environment with benchmark objects demonstrate an improvement of (i) 14% in visual reconstruction quality (PSNR), (ii) 20% in the geometric/depth reconstruction of the object surface (F-score) and (iii) 71% in the task success rate of manipulating objects a-priori unseen orientations/stable configurations in the scene; over current methods. The project page can be found here: https://actnerf.github.io.
Related papers
- PickScan: Object discovery and reconstruction from handheld interactions [99.99566882133179]
We develop an interaction-guided and class-agnostic method to reconstruct 3D representations of scenes.
Our main contribution is a novel approach to detecting user-object interactions and extracting the masks of manipulated objects.
Compared to Co-Fusion, the only comparable interaction-based and class-agnostic baseline, this corresponds to a reduction in chamfer distance of 73%.
arXiv Detail & Related papers (2024-11-17T23:09:08Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - Uncertainty-aware 3D Object-Level Mapping with Deep Shape Priors [15.34487368683311]
We propose a framework that can reconstruct high-quality object-level maps for unknown objects.
Our approach takes multiple RGB-D images as input and outputs dense 3D shapes and 9-DoF poses for detected objects.
We derive a probabilistic formulation that propagates shape and pose uncertainty through two novel loss functions.
arXiv Detail & Related papers (2023-09-17T00:48:19Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
Current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories.
This paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object.
arXiv Detail & Related papers (2023-04-10T20:55:41Z) - Fixing Malfunctional Objects With Learned Physical Simulation and
Functional Prediction [158.74130075865835]
Given a malfunctional 3D object, humans can perform mental simulations to reason about its functionality and figure out how to fix it.
To mimic humans' mental simulation process, we present FixNet, a novel framework that seamlessly incorporates perception and physical dynamics.
arXiv Detail & Related papers (2022-05-05T17:59:36Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - IFOR: Iterative Flow Minimization for Robotic Object Rearrangement [92.97142696891727]
IFOR, Iterative Flow Minimization for Robotic Object Rearrangement, is an end-to-end method for the problem of object rearrangement for unknown objects.
We show that our method applies to cluttered scenes, and in the real world, while training only on synthetic data.
arXiv Detail & Related papers (2022-02-01T20:03:56Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
Key challenge for an agent learning to interact with the world is to reason about physical properties of objects.
We propose a novel approach for modeling the dynamics of a robot's interactions directly from unlabeled 3D point clouds and images.
arXiv Detail & Related papers (2020-08-02T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.