HyperCLOVA X Technical Report
- URL: http://arxiv.org/abs/2404.01954v2
- Date: Sat, 13 Apr 2024 15:06:19 GMT
- Title: HyperCLOVA X Technical Report
- Authors: Kang Min Yoo, Jaegeun Han, Sookyo In, Heewon Jeon, Jisu Jeong, Jaewook Kang, Hyunwook Kim, Kyung-Min Kim, Munhyong Kim, Sungju Kim, Donghyun Kwak, Hanock Kwak, Se Jung Kwon, Bado Lee, Dongsoo Lee, Gichang Lee, Jooho Lee, Baeseong Park, Seongjin Shin, Joonsang Yu, Seolki Baek, Sumin Byeon, Eungsup Cho, Dooseok Choe, Jeesung Han, Youngkyun Jin, Hyein Jun, Jaeseung Jung, Chanwoong Kim, Jinhong Kim, Jinuk Kim, Dokyeong Lee, Dongwook Park, Jeong Min Sohn, Sujung Han, Jiae Heo, Sungju Hong, Mina Jeon, Hyunhoon Jung, Jungeun Jung, Wangkyo Jung, Chungjoon Kim, Hyeri Kim, Jonghyun Kim, Min Young Kim, Soeun Lee, Joonhee Park, Jieun Shin, Sojin Yang, Jungsoon Yoon, Hwaran Lee, Sanghwan Bae, Jeehwan Cha, Karl Gylleus, Donghoon Ham, Mihak Hong, Youngki Hong, Yunki Hong, Dahyun Jang, Hyojun Jeon, Yujin Jeon, Yeji Jeong, Myunggeun Ji, Yeguk Jin, Chansong Jo, Shinyoung Joo, Seunghwan Jung, Adrian Jungmyung Kim, Byoung Hoon Kim, Hyomin Kim, Jungwhan Kim, Minkyoung Kim, Minseung Kim, Sungdong Kim, Yonghee Kim, Youngjun Kim, Youngkwan Kim, Donghyeon Ko, Dughyun Lee, Ha Young Lee, Jaehong Lee, Jieun Lee, Jonghyun Lee, Jongjin Lee, Min Young Lee, Yehbin Lee, Taehong Min, Yuri Min, Kiyoon Moon, Hyangnam Oh, Jaesun Park, Kyuyon Park, Younghun Park, Hanbae Seo, Seunghyun Seo, Mihyun Sim, Gyubin Son, Matt Yeo, Kyung Hoon Yeom, Wonjoon Yoo, Myungin You, Doheon Ahn, Homin Ahn, Joohee Ahn, Seongmin Ahn, Chanwoo An, Hyeryun An, Junho An, Sang-Min An, Boram Byun, Eunbin Byun, Jongho Cha, Minji Chang, Seunggyu Chang, Haesong Cho, Youngdo Cho, Dalnim Choi, Daseul Choi, Hyoseok Choi, Minseong Choi, Sangho Choi, Seongjae Choi, Wooyong Choi, Sewhan Chun, Dong Young Go, Chiheon Ham, Danbi Han, Jaemin Han, Moonyoung Hong, Sung Bum Hong, Dong-Hyun Hwang, Seongchan Hwang, Jinbae Im, Hyuk Jin Jang, Jaehyung Jang, Jaeni Jang, Sihyeon Jang, Sungwon Jang, Joonha Jeon, Daun Jeong, Joonhyun Jeong, Kyeongseok Jeong, Mini Jeong, Sol Jin, Hanbyeol Jo, Hanju Jo, Minjung Jo, Chaeyoon Jung, Hyungsik Jung, Jaeuk Jung, Ju Hwan Jung, Kwangsun Jung, Seungjae Jung, Soonwon Ka, Donghan Kang, Soyoung Kang, Taeho Kil, Areum Kim, Beomyoung Kim, Byeongwook Kim, Daehee Kim, Dong-Gyun Kim, Donggook Kim, Donghyun Kim, Euna Kim, Eunchul Kim, Geewook Kim, Gyu Ri Kim, Hanbyul Kim, Heesu Kim, Isaac Kim, Jeonghoon Kim, Jihye Kim, Joonghoon Kim, Minjae Kim, Minsub Kim, Pil Hwan Kim, Sammy Kim, Seokhun Kim, Seonghyeon Kim, Soojin Kim, Soong Kim, Soyoon Kim, Sunyoung Kim, Taeho Kim, Wonho Kim, Yoonsik Kim, You Jin Kim, Yuri Kim, Beomseok Kwon, Ohsung Kwon, Yoo-Hwan Kwon, Anna Lee, Byungwook Lee, Changho Lee, Daun Lee, Dongjae Lee, Ha-Ram Lee, Hodong Lee, Hwiyeong Lee, Hyunmi Lee, Injae Lee, Jaeung Lee, Jeongsang Lee, Jisoo Lee, Jongsoo Lee, Joongjae Lee, Juhan Lee, Jung Hyun Lee, Junghoon Lee, Junwoo Lee, Se Yun Lee, Sujin Lee, Sungjae Lee, Sungwoo Lee, Wonjae Lee, Zoo Hyun Lee, Jong Kun Lim, Kun Lim, Taemin Lim, Nuri Na, Jeongyeon Nam, Kyeong-Min Nam, Yeonseog Noh, Biro Oh, Jung-Sik Oh, Solgil Oh, Yeontaek Oh, Boyoun Park, Cheonbok Park, Dongju Park, Hyeonjin Park, Hyun Tae Park, Hyunjung Park, Jihye Park, Jooseok Park, Junghwan Park, Jungsoo Park, Miru Park, Sang Hee Park, Seunghyun Park, Soyoung Park, Taerim Park, Wonkyeong Park, Hyunjoon Ryu, Jeonghun Ryu, Nahyeon Ryu, Soonshin Seo, Suk Min Seo, Yoonjeong Shim, Kyuyong Shin, Wonkwang Shin, Hyun Sim, Woongseob Sim, Hyejin Soh, Bokyong Son, Hyunjun Son, Seulah Son, Chi-Yun Song, Chiyoung Song, Ka Yeon Song, Minchul Song, Seungmin Song, Jisung Wang, Yonggoo Yeo, Myeong Yeon Yi, Moon Bin Yim, Taehwan Yoo, Youngjoon Yoo, Sungmin Yoon, Young Jin Yoon, Hangyeol Yu, Ui Seon Yu, Xingdong Zuo, Jeongin Bae, Joungeun Bae, Hyunsoo Cho, Seonghyun Cho, Yongjin Cho, Taekyoon Choi, Yera Choi, Jiwan Chung, Zhenghui Han, Byeongho Heo, Euisuk Hong, Taebaek Hwang, Seonyeol Im, Sumin Jegal, Sumin Jeon, Yelim Jeong, Yonghyun Jeong, Can Jiang, Juyong Jiang, Jiho Jin, Ara Jo, Younghyun Jo, Hoyoun Jung, Juyoung Jung, Seunghyeong Kang, Dae Hee Kim, Ginam Kim, Hangyeol Kim, Heeseung Kim, Hyojin Kim, Hyojun Kim, Hyun-Ah Kim, Jeehye Kim, Jin-Hwa Kim, Jiseon Kim, Jonghak Kim, Jung Yoon Kim, Rak Yeong Kim, Seongjin Kim, Seoyoon Kim, Sewon Kim, Sooyoung Kim, Sukyoung Kim, Taeyong Kim, Naeun Ko, Bonseung Koo, Heeyoung Kwak, Haena Kwon, Youngjin Kwon, Boram Lee, Bruce W. Lee, Dagyeong Lee, Erin Lee, Euijin Lee, Ha Gyeong Lee, Hyojin Lee, Hyunjeong Lee, Jeeyoon Lee, Jeonghyun Lee, Jongheok Lee, Joonhyung Lee, Junhyuk Lee, Mingu Lee, Nayeon Lee, Sangkyu Lee, Se Young Lee, Seulgi Lee, Seung Jin Lee, Suhyeon Lee, Yeonjae Lee, Yesol Lee, Youngbeom Lee, Yujin Lee, Shaodong Li, Tianyu Liu, Seong-Eun Moon, Taehong Moon, Max-Lasse Nihlenramstroem, Wonseok Oh, Yuri Oh, Hongbeen Park, Hyekyung Park, Jaeho Park, Nohil Park, Sangjin Park, Jiwon Ryu, Miru Ryu, Simo Ryu, Ahreum Seo, Hee Seo, Kangdeok Seo, Jamin Shin, Seungyoun Shin, Heetae Sin, Jiangping Wang, Lei Wang, Ning Xiang, Longxiang Xiao, Jing Xu, Seonyeong Yi, Haanju Yoo, Haneul Yoo, Hwanhee Yoo, Liang Yu, Youngjae Yu, Weijie Yuan, Bo Zeng, Qian Zhou, Kyunghyun Cho, Jung-Woo Ha, Joonsuk Park, Jihyun Hwang, Hyoung Jo Kwon, Soonyong Kwon, Jungyeon Lee, Seungho Lee, Seonghyeon Lim, Hyunkyung Noh, Seungho Choi, Sang-Woo Lee, Jung Hwa Lim, Nako Sung,
- Abstract summary: We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture.
HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets.
The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English.
- Score: 119.94633129762133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.
Related papers
- Can Code-Switched Texts Activate a Knowledge Switch in LLMs? A Case Study on English-Korean Code-Switching [14.841981996951395]
Code-switching (CS) can convey subtle cultural and linguistic nuances that can be otherwise lost in translation.
Recent state-of-the-art multilingual large language models (LLMs) demonstrate excellent multilingual abilities in various aspects including understanding CS.
arXiv Detail & Related papers (2024-10-24T05:14:03Z) - SeaLLMs 3: Open Foundation and Chat Multilingual Large Language Models for Southeast Asian Languages [77.75535024869224]
We present SeaLLMs 3, the latest iteration of the SeaLLMs model family, tailored for Southeast Asian languages.
SeaLLMs 3 aims to bridge this gap by covering a comprehensive range of languages spoken in this region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese.
Our model excels in tasks such as world knowledge, mathematical reasoning, translation, and instruction following, achieving state-of-the-art performance among similarly sized models.
arXiv Detail & Related papers (2024-07-29T03:26:22Z) - CLIcK: A Benchmark Dataset of Cultural and Linguistic Intelligence in Korean [18.526285276022907]
We introduce a benchmark of Cultural and Linguistic Intelligence in Korean dataset comprising 1,995 QA pairs.
CLIcK sources its data from official Korean exams and textbooks, partitioning the questions into eleven categories under the two main categories of language and culture.
Using CLIcK, we test 13 language models to assess their performance. Our evaluation uncovers insights into their performances across the categories, as well as the diverse factors affecting their comprehension.
arXiv Detail & Related papers (2024-03-11T03:54:33Z) - Are Structural Concepts Universal in Transformer Language Models?
Towards Interpretable Cross-Lingual Generalization [27.368684663279463]
We investigate the potential for explicitly aligning conceptual correspondence between languages to enhance cross-lingual generalization.
Using the syntactic aspect of language as a testbed, our analyses of 43 languages reveal a high degree of alignability.
We propose a meta-learning-based method to learn to align conceptual spaces of different languages.
arXiv Detail & Related papers (2023-10-19T14:50:51Z) - HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models [0.0]
We introduce the HAE-RAE Bench, a dataset curated to challenge models lacking Korean cultural and contextual depth.
The dataset encompasses six downstream tasks across four domains: vocabulary, history, general knowledge, and reading comprehension.
arXiv Detail & Related papers (2023-09-06T04:38:16Z) - XLM-K: Improving Cross-Lingual Language Model Pre-Training with
Multilingual Knowledge [31.765178013933134]
Cross-lingual pre-training has achieved great successes using monolingual and bilingual plain text corpora.
We propose XLM-K, a cross-lingual language model incorporating multilingual knowledge in pre-training.
arXiv Detail & Related papers (2021-09-26T11:46:20Z) - X-METRA-ADA: Cross-lingual Meta-Transfer Learning Adaptation to Natural
Language Understanding and Question Answering [55.57776147848929]
We propose X-METRA-ADA, a cross-lingual MEta-TRAnsfer learning ADAptation approach for Natural Language Understanding (NLU)
Our approach adapts MAML, an optimization-based meta-learning approach, to learn to adapt to new languages.
We show that our approach outperforms naive fine-tuning, reaching competitive performance on both tasks for most languages.
arXiv Detail & Related papers (2021-04-20T00:13:35Z) - XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation [93.80733419450225]
This paper analyzes the current state of cross-lingual transfer learning.
We extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks.
arXiv Detail & Related papers (2021-04-15T12:26:12Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
We plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages.
It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language.
The proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark.
arXiv Detail & Related papers (2020-10-30T03:41:38Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.