Cross-lingual Text Classification Transfer: The Case of Ukrainian
- URL: http://arxiv.org/abs/2404.02043v2
- Date: Tue, 04 Feb 2025 20:08:08 GMT
- Title: Cross-lingual Text Classification Transfer: The Case of Ukrainian
- Authors: Daryna Dementieva, Valeriia Khylenko, Georg Groh,
- Abstract summary: Ukrainian stands as a language that can benefit from the continued refinement of cross-lingual methodologies.<n>Due to our knowledge, there is a tremendous lack of Ukrainian corpora for typical text classification tasks.<n>In this work, we leverage the state-of-the-art advances in NLP, exploring cross-lingual knowledge transfer methods.
- Score: 11.508759658889382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the extensive amount of labeled datasets in the NLP text classification field, the persistent imbalance in data availability across various languages remains evident. To support further fair development of NLP models, exploring the possibilities of effective knowledge transfer to new languages is crucial. Ukrainian, in particular, stands as a language that still can benefit from the continued refinement of cross-lingual methodologies. Due to our knowledge, there is a tremendous lack of Ukrainian corpora for typical text classification tasks, i.e., different types of style, or harmful speech, or texts relationships. However, the amount of resources required for such corpora collection from scratch is understandable. In this work, we leverage the state-of-the-art advances in NLP, exploring cross-lingual knowledge transfer methods avoiding manual data curation: large multilingual encoders and translation systems, LLMs, and language adapters. We test the approaches on three text classification tasks -- toxicity classification, formality classification, and natural language inference (NLI) -- providing the ``recipe'' for the optimal setups for each task.
Related papers
- Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP [13.662528492286528]
We present a novel cross-lingual vocabulary transfer strategy, trans-tokenization, designed to tackle this challenge and enable more efficient language adaptation.
Our approach focuses on adapting a high-resource monolingual LLM to an unseen target language by initializing the token embeddings of the target language using a weighted average of semantically similar token embeddings from the source language.
We introduce Hydra LLMs, models with multiple swappable language modeling heads and embedding tables, which further extend the capabilities of our trans-tokenization strategy.
arXiv Detail & Related papers (2024-08-08T08:37:28Z) - UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding [31.272603877215733]
Cross-lingual representation learning transfers knowledge from resource-rich data to resource-scarce ones to improve the semantic understanding abilities of different languages.
We propose an Unsupervised Pseudo Semantic Data Augmentation (UniPSDA) mechanism for cross-lingual natural language understanding to enrich the training data without human interventions.
arXiv Detail & Related papers (2024-06-24T07:27:01Z) - Universal Cross-Lingual Text Classification [0.3958317527488535]
This research proposes a novel perspective on Universal Cross-Lingual Text Classification.
Our approach involves blending supervised data from different languages during training to create a universal model.
The primary goal is to enhance label and language coverage, aiming for a label set that represents a union of labels from various languages.
arXiv Detail & Related papers (2024-06-16T17:58:29Z) - Toxicity Classification in Ukrainian [11.847477933042777]
labeled binary toxicity classification corpora are not available for all languages, which is understandable given the resource-intensive nature of the annotation process.
In this study, we aim to fill this gap by investigating cross-lingual knowledge transfer techniques and creating labeled corpora by: (i)translating from an English corpus, (ii)filtering toxic samples using keywords, and (iii)annotating with crowdsourcing.
arXiv Detail & Related papers (2024-04-27T09:20:13Z) - Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
Cross-lingual alignment is the meaningful similarity of representations across languages in multilingual language models.
We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field.
arXiv Detail & Related papers (2024-04-09T11:39:53Z) - Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages [0.0]
We introduce Bhinneka Korpus, a multilingual parallel corpus featuring five Indonesian local languages.
Our goal is to enhance access and utilization of these resources, extending their reach within the country.
arXiv Detail & Related papers (2024-04-01T09:24:06Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
Cross-lingual text classification is typically built on large-scale, multilingual language models (LMs) pretrained on a variety of languages of interest.
We propose revisiting the classic "translate-and-test" pipeline to neatly separate the translation and classification stages.
arXiv Detail & Related papers (2023-06-08T07:33:22Z) - Soft Prompt Decoding for Multilingual Dense Retrieval [30.766917713997355]
We show that applying state-of-the-art approaches developed for cross-lingual information retrieval to MLIR tasks leads to sub-optimal performance.
This is due to the heterogeneous and imbalanced nature of multilingual collections.
We present KD-SPD, a novel soft prompt decoding approach for MLIR that implicitly "translates" the representation of documents in different languages into the same embedding space.
arXiv Detail & Related papers (2023-05-15T21:17:17Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
We probe multilingual language models for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs.
We also devise a novel method to expose this knowledge by additionally fine-tuning multilingual models.
We report substantial gains on standard benchmarks.
arXiv Detail & Related papers (2022-04-30T13:23:16Z) - Expanding Pretrained Models to Thousands More Languages via
Lexicon-based Adaptation [133.7313847857935]
Our study highlights how NLP methods can be adapted to thousands more languages that are under-served by current technology.
For 19 under-represented languages across 3 tasks, our methods lead to consistent improvements of up to 5 and 15 points with and without extra monolingual text respectively.
arXiv Detail & Related papers (2022-03-17T16:48:22Z) - From Masked Language Modeling to Translation: Non-English Auxiliary
Tasks Improve Zero-shot Spoken Language Understanding [24.149299722716155]
We introduce xSID, a new benchmark for cross-lingual Slot and Intent Detection in 13 languages from 6 language families, including a very low-resource dialect.
We propose a joint learning approach, with English SLU training data and non-English auxiliary tasks from raw text, syntax and translation for transfer.
Our results show that jointly learning the main tasks with masked language modeling is effective for slots, while machine translation transfer works best for intent classification.
arXiv Detail & Related papers (2021-05-15T23:51:11Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
multilingual BERT works remarkably well on cross-lingual transfer tasks.
Datasize and context window size are crucial factors to the transferability.
There is a computationally cheap but effective approach to improve the cross-lingual ability of multilingual BERT.
arXiv Detail & Related papers (2020-04-20T11:13:16Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
We investigate the language-neutrality of multilingual contextual embeddings directly and with respect to lexical semantics.
Our results show that contextual embeddings are more language-neutral and, in general, more informative than aligned static word-type embeddings.
We show how to reach state-of-the-art accuracy on language identification and match the performance of statistical methods for word alignment of parallel sentences.
arXiv Detail & Related papers (2020-04-09T19:50:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.