One-dimensional Fermi polaron after a kick: two-sided singularity of the momentum distribution, Bragg reflection and other exact results
- URL: http://arxiv.org/abs/2404.02099v2
- Date: Mon, 24 Jun 2024 17:33:02 GMT
- Title: One-dimensional Fermi polaron after a kick: two-sided singularity of the momentum distribution, Bragg reflection and other exact results
- Authors: Oleksandr Gamayun, Oleg Lychkovskiy,
- Abstract summary: We calculate the distribution of the polaron momentum established when the post-kick relaxation is over.
In the first process, the whole impulse is transferred to the polaron, without creating phonon-like excitations of the fluid.
The latter process is, in fact, a Bragg reflection at the edge of the emergent Brillouin zone.
- Score: 17.857341127079305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A mobile impurity particle immersed in a quantum fluid forms a polaron - a quasiparticle consisting of the impurity and a local disturbance of the fluid around it. We ask what happens to a one-dimensional polaron after a kick, i.e. an abrupt application of a force that instantly delivers a finite impulse to the impurity. In the framework of an integrable model describing an impurity in a one-dimensional gas of fermions or hard-core bosons, we calculate the distribution of the polaron momentum established when the post-kick relaxation is over. A remarkable feature of this distribution is a two-sided power-law singularity. It emerges due to one of two processes. In the first process, the whole impulse is transferred to the polaron, without creating phonon-like excitations of the fluid. In the second process, the impulse is shared between the polaron and the center-of-mass motion of the fluid, again without creating any fluid excitations. The latter process is, in fact, a Bragg reflection at the edge of the emergent Brillouin zone. We carefully analyze the conditions for each of the two processes. The asymptotic form of the distribution in the vicinity of the singularity is derived.
Related papers
- The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity [77.34726150561087]
We study the Hamiltonian for a system of N identical bosons interacting with an impurity.
We introduce a three-body force acting at short distances.
The effect of this force is to reduce to zero the strength of the zero-range interaction between two particles.
arXiv Detail & Related papers (2022-02-25T15:34:06Z) - Dispersion relation of a polaron in the Yang-Gaudin Bose gas [0.0]
We study a one-dimensional Bose gas with two internal states described by the Yang-Gaudin model.
We calculate analytically the dispersion relation of a polaron quasiparticle, which is the lowest excitation branch.
arXiv Detail & Related papers (2021-11-19T20:08:44Z) - Ultralight dark matter or dark radiation cosmologically produced from
infrared dressing [0.0]
We find a striking resemblance to the process of particle decay: the initial amplitude of the single particle decays in time.
At long time the entanglement state is an entangled state of the heavy and massless particles.
The entropy is shown to grow under time evolution describing the flow of information from the initial single particle to the final multiparticle state.
arXiv Detail & Related papers (2021-10-29T01:45:04Z) - Pattern formation in one-dimensional polaron systems and temporal
orthogonality catastrophe [0.0]
Recent studies have demonstrated that higher than two-body bath-impurity correlations are not important for quantitatively describing the ground state of the Bose polaron.
We employ the so-called Gross Ansatz approach to unravel the stationary and dynamical properties of the homogeneous one-dimensional Bose-polaron.
arXiv Detail & Related papers (2021-10-21T14:20:12Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Kinetically constrained freezing transition in a dipole-conserving
system [0.4014524824655105]
We study a lattice gas of particles in one dimension with strictly finite-range interactions.
We find two distinct phases: Near half filling the system thermalizes subdiffusively, with almost all configurations belonging to a single dynamically connected sector.
We study the static and dynamic scaling properties of this weak-to-strong fragmentation phase transition in a kinetically constrained classical Markov circuit model.
arXiv Detail & Related papers (2020-03-31T20:38:13Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.