CAPE: CAM as a Probabilistic Ensemble for Enhanced DNN Interpretation
- URL: http://arxiv.org/abs/2404.02388v2
- Date: Thu, 4 Apr 2024 04:23:10 GMT
- Title: CAPE: CAM as a Probabilistic Ensemble for Enhanced DNN Interpretation
- Authors: Townim Faisal Chowdhury, Kewen Liao, Vu Minh Hieu Phan, Minh-Son To, Yutong Xie, Kevin Hung, David Ross, Anton van den Hengel, Johan W. Verjans, Zhibin Liao,
- Abstract summary: Class activation maps (CAMs) and recent variants provide ways to visually explain the Deep Neural Networks (DNNs) decision-making process.
We propose CAPE, a novel reformulation of CAM that provides a unified and probabilistically meaningful assessment of the contributions of image regions.
- Score: 35.021331140484804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNNs) are widely used for visual classification tasks, but their complex computation process and black-box nature hinder decision transparency and interpretability. Class activation maps (CAMs) and recent variants provide ways to visually explain the DNN decision-making process by displaying 'attention' heatmaps of the DNNs. Nevertheless, the CAM explanation only offers relative attention information, that is, on an attention heatmap, we can interpret which image region is more or less important than the others. However, these regions cannot be meaningfully compared across classes, and the contribution of each region to the model's class prediction is not revealed. To address these challenges that ultimately lead to better DNN Interpretation, in this paper, we propose CAPE, a novel reformulation of CAM that provides a unified and probabilistically meaningful assessment of the contributions of image regions. We quantitatively and qualitatively compare CAPE with state-of-the-art CAM methods on CUB and ImageNet benchmark datasets to demonstrate enhanced interpretability. We also test on a cytology imaging dataset depicting a challenging Chronic Myelomonocytic Leukemia (CMML) diagnosis problem. Code is available at: https://github.com/AIML-MED/CAPE.
Related papers
- KPCA-CAM: Visual Explainability of Deep Computer Vision Models using Kernel PCA [1.5550533143704957]
This research introduces KPCA-CAM, a technique designed to enhance the interpretability of Convolutional Neural Networks (CNNs)
KPCA-CAM leverages Principal Component Analysis (PCA) with the kernel trick to capture nonlinear relationships within CNN activations more effectively.
Empirical evaluations on the ILSVRC dataset across different CNN models demonstrate that KPCA-CAM produces more precise activation maps.
arXiv Detail & Related papers (2024-09-30T22:36:37Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - SCAAT: Improving Neural Network Interpretability via Saliency
Constrained Adaptive Adversarial Training [10.716021768803433]
Saliency map is a common form of explanation illustrating the heatmap of feature attributions.
We propose a model-agnostic learning method called Saliency Constrained Adaptive Adversarial Training (SCAAT) to improve the quality of such DNN interpretability.
arXiv Detail & Related papers (2023-11-09T04:48:38Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
We propose an outcome-agnostic CAM approach, called BroadCAM, for small-scale weakly supervised applications.
By evaluating BroadCAM on VOC2012 and BCSS-WSSS for WSSS and OpenImages30k for WSOL, BroadCAM demonstrates superior performance.
arXiv Detail & Related papers (2023-09-07T06:45:43Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - Cluster-CAM: Cluster-Weighted Visual Interpretation of CNNs' Decision in
Image Classification [12.971559051829658]
Cluster-CAM is an effective and efficient gradient-free CNN interpretation algorithm.
We propose an artful strategy to forge a cognition-base map and cognition-scissors from clustered feature maps.
arXiv Detail & Related papers (2023-02-03T10:38:20Z) - Learning Visual Explanations for DCNN-Based Image Classifiers Using an
Attention Mechanism [8.395400675921515]
Two new learning-based AI (XAI) methods for deep convolutional neural network (DCNN) image classifiers, called L-CAM-Fm and L-CAM-Img, are proposed.
Both methods use an attention mechanism that is inserted in the original (frozen) DCNN and is trained to derive class activation maps (CAMs) from the last convolutional layer's feature maps.
Experimental evaluation on ImageNet shows that the proposed methods achieve competitive results while requiring a single forward pass at the inference stage.
arXiv Detail & Related papers (2022-09-22T17:33:18Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models.
The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers.
arXiv Detail & Related papers (2020-08-01T17:14:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.