On Linearizing Structured Data in Encoder-Decoder Language Models: Insights from Text-to-SQL
- URL: http://arxiv.org/abs/2404.02389v1
- Date: Wed, 3 Apr 2024 01:16:20 GMT
- Title: On Linearizing Structured Data in Encoder-Decoder Language Models: Insights from Text-to-SQL
- Authors: Yutong Shao, Ndapa Nakashole,
- Abstract summary: This work investigates the linear handling of structured data in encoder-decoder language models, specifically T5.
Our findings reveal the model's ability to mimic human-designed processes such as schema linking and syntax prediction.
We also uncover insights into the model's internal mechanisms, including the ego-centric nature of structure node encodings.
- Score: 8.57550491437633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structured data, prevalent in tables, databases, and knowledge graphs, poses a significant challenge in its representation. With the advent of large language models (LLMs), there has been a shift towards linearization-based methods, which process structured data as sequential token streams, diverging from approaches that explicitly model structure, often as a graph. Crucially, there remains a gap in our understanding of how these linearization-based methods handle structured data, which is inherently non-linear. This work investigates the linear handling of structured data in encoder-decoder language models, specifically T5. Our findings reveal the model's ability to mimic human-designed processes such as schema linking and syntax prediction, indicating a deep, meaningful learning of structure beyond simple token sequencing. We also uncover insights into the model's internal mechanisms, including the ego-centric nature of structure node encodings and the potential for model compression due to modality fusion redundancy. Overall, this work sheds light on the inner workings of linearization-based methods and could potentially provide guidance for future research.
Related papers
- Dissecting embedding method: learning higher-order structures from data [0.0]
Geometric deep learning methods for data learning often include set of assumptions on the geometry of the feature space.
These assumptions together with data being discrete and finite can cause some generalisations, which are likely to create wrong interpretations of the data and models outputs.
arXiv Detail & Related papers (2024-10-14T08:19:39Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Structured Language Generation Model for Robust Structure Prediction [6.4736137270915215]
We propose a framework that reduces sequence-to-sequence problems to classification problems via methodologies in loss calibration and decoding method.
Our experimental results show that SLGM is able to maintain performance without explicit dataset information, follow and potentially replace dataset-specific fine-tuning.
arXiv Detail & Related papers (2024-02-14T06:33:22Z) - DiSK: A Diffusion Model for Structured Knowledge [12.472921856815942]
Diffusion Models of Structured Knowledge (DiSK) is a new architecture and training approach specialized for structured data.
DiSK handles text, categorical, and continuous numerical data using a Gaussian mixture model approach.
arXiv Detail & Related papers (2023-12-08T18:59:14Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Improving Compositional Generalization with Self-Training for
Data-to-Text Generation [36.973617793800315]
We study the compositional generalization of current generation models in data-to-text tasks.
By simulating structural shifts in the compositional Weather dataset, we show that T5 models fail to generalize to unseen structures.
We propose an approach based on self-training using finetuned BLEURT for pseudo-response selection.
arXiv Detail & Related papers (2021-10-16T04:26:56Z) - Structural Adapters in Pretrained Language Models for AMR-to-text
Generation [59.50420985074769]
Previous work on text generation from graph-structured data relies on pretrained language models (PLMs)
We propose StructAdapt, an adapter method to encode graph structure into PLMs.
arXiv Detail & Related papers (2021-03-16T15:06:50Z) - Variational Autoencoder with Learned Latent Structure [4.41370484305827]
We introduce the Variational Autoencoder with Learned Latent Structure (VAELLS)
VAELLS incorporates a learnable manifold model into the latent space of a VAE.
We validate our model on examples with known latent structure and also demonstrate its capabilities on a real-world dataset.
arXiv Detail & Related papers (2020-06-18T14:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.