Solar synthetic imaging: Introducing denoising diffusion probabilistic models on SDO/AIA data
- URL: http://arxiv.org/abs/2404.02552v1
- Date: Wed, 3 Apr 2024 08:18:45 GMT
- Title: Solar synthetic imaging: Introducing denoising diffusion probabilistic models on SDO/AIA data
- Authors: Francesco P. Ramunno, S. Hackstein, V. Kinakh, M. Drozdova, G. Quetant, A. Csillaghy, S. Voloshynovskiy,
- Abstract summary: This study proposes using generative deep learning models, specifically a Denoising Diffusion Probabilistic Model (DDPM), to create synthetic images of solar phenomena.
By employing a dataset from the AIA instrument aboard the SDO spacecraft, we aim to address the data scarcity issue.
The DDPM's performance is evaluated using cluster metrics, Frechet Inception Distance (FID), and F1-score, showcasing promising results in generating realistic solar imagery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the rarity of significant solar flares compared to smaller ones, training effective machine learning models for solar activity forecasting is challenging due to insufficient data. This study proposes using generative deep learning models, specifically a Denoising Diffusion Probabilistic Model (DDPM), to create synthetic images of solar phenomena, including flares of varying intensities. By employing a dataset from the AIA instrument aboard the SDO spacecraft, focusing on the 171 {\AA} band that captures various solar activities, and classifying images with GOES X-ray measurements based on flare intensity, we aim to address the data scarcity issue. The DDPM's performance is evaluated using cluster metrics, Frechet Inception Distance (FID), and F1-score, showcasing promising results in generating realistic solar imagery. We conduct two experiments: one to train a supervised classifier for event identification and another for basic flare prediction, demonstrating the value of synthetic data in managing imbalanced datasets. This research underscores the potential of DDPMs in solar data analysis and forecasting, suggesting further exploration into their capabilities for solar flare prediction and application in other deep learning and physical tasks.
Related papers
- Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
Diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI)
We provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence.
We propose a novel data extraction method named textbfSurrogate condItional Data Extraction (SIDE) that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs.
arXiv Detail & Related papers (2024-10-03T13:17:06Z) - Enhancing Multivariate Time Series-based Solar Flare Prediction with Multifaceted Preprocessing and Contrastive Learning [0.9374652839580181]
Accurate solar flare prediction is crucial due to the significant risks that intense solar flares pose to astronauts, space equipment, and satellite communication systems.
Our research enhances solar flare prediction by utilizing advanced data preprocessing and classification methods.
arXiv Detail & Related papers (2024-09-21T05:00:34Z) - Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution [0.0]
We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation with Denoising Diffusion Probabilistic Models (DDPMs)
Our approach combines "computer science metrics" for image quality and "physics metrics" for physical accuracy to evaluate model performance.
The results indicate that DDPMs are effective in maintaining the structural integrity, the dynamic range of solar magnetic fields, the magnetic flux and other physical features such as the size of the active regions, surpassing traditional persistence models, also in flaring situation.
arXiv Detail & Related papers (2024-07-16T12:28:10Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science.
This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks.
arXiv Detail & Related papers (2024-03-22T17:11:47Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
We employ a suite of machine learning strategies to evaluate the predictive potential of a new data product for a forecast of post-solar flare SEP events.
Despite the augmented volume of data, the prediction accuracy reaches 0.7 +- 0.1, which aligns with but does not exceed these published benchmarks.
arXiv Detail & Related papers (2024-03-04T23:12:17Z) - Solar Radiation Prediction in the UTEQ based on Machine Learning Models [0.0]
The data was obtained from a pyranometer at the Central Campus of the State Technical University of Quevedo (UTEQ)
Different machine learning algorithms were compared using the evaluation metrics Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination ($R2$)
The study revealed that Gradient Boosting Regressor exhibited superior performance, closely followed by the Random Forest Regressor.
arXiv Detail & Related papers (2023-12-29T15:54:45Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.