Dynamical Casimir effect with screened scalar fields
- URL: http://arxiv.org/abs/2404.02630v1
- Date: Wed, 3 Apr 2024 10:36:42 GMT
- Title: Dynamical Casimir effect with screened scalar fields
- Authors: Ana Lucía Báez-Camargo, Daniel Hartley, Christian Käding, Ivette Fuentes-Guridi,
- Abstract summary: We present the first analysis of the impact of a chameleon field on the dynamical Casimir effect.
We show that particle production is reduced due to the presence of the chameleon field.
- Score: 0.562479170374811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the nature of dark energy and dark matter is one of modern physics' greatest open problems. Scalar-tensor theories with screened scalar fields like the chameleon model are among the most popular proposed solutions. In this article, we present the first analysis of the impact of a chameleon field on the dynamical Casimir effect, whose main feature is the particle production associated with a resonant condition of boundary periodic motion in cavities. For this, we employ a recently developed method to compute the evolution of confined quantum scalar fields in a globally hyperbolic spacetime by means of time-dependent Bogoliubov transformations. As a result, we show that particle production is reduced due to the presence of the chameleon field. In addition, our results for the Bogoliubov coefficients and the mean number of created particles agree with known results in the absence of a chameleon field. Our results initiate the discussion of the evolution of quantum fields on screened scalar field backgrounds.
Related papers
- Generalization of the exact Eriksen and exponential operators of the Foldy-Wouthuysen transformation to arbitrary-spin particles in nonstationary fields [55.2480439325792]
We use the Foldy-Wouthuysen transformation which allows one to obtain the Schr"odinger picture of relativistic quantum mechanics.
Unlike previous publications, we determine exact Eriksen and exponential operators of the Foldy-Wouthuysen transformation.
arXiv Detail & Related papers (2024-10-27T18:41:50Z) - Interacting Dirac fields in an expanding universe: dynamical condensates and particle production [41.94295877935867]
This work focuses on a self-interacting field theory of Dirac fermions in an expanding Friedmann-Robertson-Walker universe.
We study how the non-trivialative condensates arise and, more importantly, how their real-time evolution has an impact on particle production.
arXiv Detail & Related papers (2024-08-12T14:21:25Z) - Quantum Field Theory in Curved Spacetime Approach to the Backreaction of Dynamical Casimir Effect [0.0]
The backreaction of particle creation to the boundary motion is studied using quantum field theory in curved spacetime technique.
In the 3+1 dimension, we find that the backreaction tends to slow down the system to suppress the further particle creation, similar to the case of cosmological particle creation.
arXiv Detail & Related papers (2024-05-16T14:01:48Z) - Classical and quantum field theory in a box with moving boundaries: A numerical study of the Dynamical Casimir Effect [0.0]
We present a detailed description of a quantum scalar field theory within a flat spacetime confined to a cavity with perfectly reflecting moving boundaries.
We establish an equivalence between this time-dependent setting and a field theory on an acoustic metric with static Dirichlet boundary conditions.
arXiv Detail & Related papers (2024-04-09T09:43:39Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Optomechanical Backreaction of Quantum Field Processes in Dynamical
Casimir Effect [0.0]
We study the backreaction effects of quantum field processes in Dynamical Casimir effect (DCE) and cosmological particle creation (CPC)
We find that for 1+1D, the only quantum field effect due to the trace anomaly tends to accelerate the contraction of the ring over and above that due to the attractive force in the static Casimir effect.
Our findings comply with what is known as the quantum Lenz law, found in cosmological backreaction problems.
arXiv Detail & Related papers (2023-08-06T14:41:38Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Remnants of the nonrelativistic Casimir effect on the lattice [0.0]
We investigate the Casimir effect for various dispersion relations on the lattice.
We find that Casimir effects for dispersions proportional to an even power of momentum are absent in a long distance but a remnant of the Casimir effect survives in a short distance.
Such a remnant Casimir effect will be experimentally observed in materials with quantum fields on the lattice, such as thin films, narrow nanoribbons, and short nanowires.
arXiv Detail & Related papers (2022-04-26T02:06:30Z) - Interplay between optomechanics and the dynamical Casimir effect [55.41644538483948]
We develop a model of a quantum field confined within a cavity with a movable wall where the position of the wall is quantized.
We obtain a full description of the dynamics of both the quantum field and the confining wall depending on the initial state of the whole system.
arXiv Detail & Related papers (2022-04-22T14:27:30Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.