Attention is Naturally Sparse with Gaussian Distributed Input
- URL: http://arxiv.org/abs/2404.02690v1
- Date: Wed, 3 Apr 2024 12:37:34 GMT
- Title: Attention is Naturally Sparse with Gaussian Distributed Input
- Authors: Yichuan Deng, Zhao Song, Chiwun Yang,
- Abstract summary: This study presents a rigorous theoretical analysis of the sparsity in attention scores within Large Language Models (LLMs)
Our main contribution lies in providing a detailed theoretical examination of how sparsity manifests in attention mechanisms, offering insights into the potential trade-offs between computational savings and model effectiveness.
- Score: 8.602260591839318
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The computational intensity of Large Language Models (LLMs) is a critical bottleneck, primarily due to the $O(n^2)$ complexity of the attention mechanism in transformer architectures. Addressing this, sparse attention emerges as a key innovation, aiming to reduce computational load while maintaining model performance. This study presents a rigorous theoretical analysis of the sparsity in attention scores within LLMs, particularly under the framework of Gaussian inputs. By establishing a set of foundational assumptions and employing a methodical theoretical approach, we unravel the intrinsic characteristics of attention score sparsity and its implications on computational efficiency. Our main contribution lies in providing a detailed theoretical examination of how sparsity manifests in attention mechanisms, offering insights into the potential trade-offs between computational savings and model effectiveness. This work not only advances our understanding of sparse attention but also provides a scaffold for future research in optimizing the computational frameworks of LLMs, paving the way for more scalable and efficient AI systems.
Related papers
- Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations.
This paper addresses the question of reinforcement learning under $textitgeneral$ latent dynamics from a statistical and algorithmic perspective.
arXiv Detail & Related papers (2024-10-23T14:22:49Z) - Beyond Linear Approximations: A Novel Pruning Approach for Attention Matrix [17.086679273053853]
Large Language Models (LLMs) have shown immense potential in enhancing various aspects of our daily lives.
Their growing capabilities come at the cost of extremely large model sizes, making deployment on edge devices challenging.
This paper introduces a novel approach to LLM weight pruning that directly optimize for approximating the attention matrix.
arXiv Detail & Related papers (2024-10-15T04:35:56Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - Beyond KV Caching: Shared Attention for Efficient LLMs [5.801044612920816]
This paper introduces a novel Shared Attention (SA) mechanism to enhance the efficiency of large language models (LLMs)
Our approach utilizes the isotropic tendencies of attention distributions observed in advanced LLMs post-pretraining to reduce both the computational flops and the size of the KV cache required during inference.
Our findings suggest that SA not only conserves computational resources but also maintains robust model performance, thereby facilitating the deployment of more efficient LLMs in resource-constrained environments.
arXiv Detail & Related papers (2024-07-13T07:23:07Z) - Extending Token Computation for LLM Reasoning [5.801044612920816]
Large Language Models (LLMs) are pivotal in advancing natural language processing.
LLMs often struggle with complex reasoning tasks due to inefficient attention distributions.
We introduce a novel method for extending computed tokens in the Chain-of-Thought process, utilizing attention mechanism optimization.
arXiv Detail & Related papers (2024-03-22T03:23:58Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Computing large deviation prefactors of stochastic dynamical systems
based on machine learning [4.474127100870242]
We present large deviation theory that characterizes the exponential estimate for rare events of dynamical systems in the limit of weak noise.
We design a neural network framework to compute quasipotential, most probable paths and prefactors based on the decomposition of vector field.
Numerical experiments demonstrate its powerful function in exploring internal mechanism of rare events triggered by weak random fluctuations.
arXiv Detail & Related papers (2023-06-20T09:59:45Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Taming Discrete Integration via the Boon of Dimensionality [36.55732373661026]
We propose an efficient reduction of discrete integration to model counting.
We perform detailed empirical analysis over benchmarks arising from neural network verification domains.
DeWeight is the first technique to compute estimates with provable guarantees for this class of benchmarks.
arXiv Detail & Related papers (2020-10-21T02:32:51Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
We present a formal analysis of how self-attention affects gradient propagation in recurrent networks.
We prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies.
We propose a relevancy screening mechanism that allows for a scalable use of sparse self-attention with recurrence.
arXiv Detail & Related papers (2020-06-16T19:24:25Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.