Deep Image Composition Meets Image Forgery
- URL: http://arxiv.org/abs/2404.02897v2
- Date: Thu, 25 Apr 2024 20:42:13 GMT
- Title: Deep Image Composition Meets Image Forgery
- Authors: Eren Tahir, Mert Bal,
- Abstract summary: Image forgery has been studied for many years.
Deep learning models require large amounts of labeled data for training.
We use state of the art image composition deep learning models to generate spliced images close to the quality of real-life manipulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image forgery is a topic that has been studied for many years. Before the breakthrough of deep learning, forged images were detected using handcrafted features that did not require training. These traditional methods failed to perform satisfactorily even on datasets much worse in quality than real-life image manipulations. Advances in deep learning have impacted image forgery detection as much as they have impacted other areas of computer vision and have improved the state of the art. Deep learning models require large amounts of labeled data for training. In the case of image forgery, labeled data at the pixel level is a very important factor for the models to learn. None of the existing datasets have sufficient size, realism and pixel-level labeling at the same time. This is due to the high cost of producing and labeling quality images. It can take hours for an image editing expert to manipulate just one image. To bridge this gap, we automate data generation using image composition techniques that are very related to image forgery. Unlike other automated data generation frameworks, we use state of the art image composition deep learning models to generate spliced images close to the quality of real-life manipulations. Finally, we test the generated dataset on the SOTA image manipulation detection model and show that its prediction performance is lower compared to existing datasets, i.e. we produce realistic images that are more difficult to detect. Dataset will be available at https://github.com/99eren99/DIS25k .
Related papers
- Community Forensics: Using Thousands of Generators to Train Fake Image Detectors [15.166026536032142]
One of the key challenges of detecting AI-generated images is spotting images that have been created by previously unseen generative models.
We propose a new dataset that is significantly larger and more diverse than prior work.
The resulting dataset contains 2.7M images that have been sampled from 4803 different models.
arXiv Detail & Related papers (2024-11-06T18:59:41Z) - On the Effectiveness of Dataset Alignment for Fake Image Detection [28.68129042301801]
A good detector should focus on the generative models fingerprints while ignoring image properties such as semantic content, resolution, file format, etc.
In this work, we argue that in addition to these algorithmic choices, we also require a well aligned dataset of real/fake images to train a robust detector.
For the family of LDMs, we propose a very simple way to achieve this: we reconstruct all the real images using the LDMs autoencoder, without any denoising operation. We then train a model to separate these real images from their reconstructions.
arXiv Detail & Related papers (2024-10-15T17:58:07Z) - SIDAR: Synthetic Image Dataset for Alignment & Restoration [2.9649783577150837]
There is a lack of datasets that provide enough data to train and evaluate end-to-end deep learning models.
Our proposed data augmentation helps to overcome the issue of data scarcity by using 3D rendering.
The resulting dataset can serve as a training and evaluation set for a multitude of tasks involving image alignment and artifact removal.
arXiv Detail & Related papers (2023-05-19T23:32:06Z) - Synthetic Data for Object Classification in Industrial Applications [53.180678723280145]
In object classification, capturing a large number of images per object and in different conditions is not always possible.
This work explores the creation of artificial images using a game engine to cope with limited data in the training dataset.
arXiv Detail & Related papers (2022-12-09T11:43:04Z) - ClipCrop: Conditioned Cropping Driven by Vision-Language Model [90.95403416150724]
We take advantage of vision-language models as a foundation for creating robust and user-intentional cropping algorithms.
We develop a method to perform cropping with a text or image query that reflects the user's intention as guidance.
Our pipeline design allows the model to learn text-conditioned aesthetic cropping with a small dataset.
arXiv Detail & Related papers (2022-11-21T14:27:07Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - Learning to See by Looking at Noise [87.12788334473295]
We investigate a suite of image generation models that produce images from simple random processes.
These are then used as training data for a visual representation learner with a contrastive loss.
Our findings show that it is important for the noise to capture certain structural properties of real data but that good performance can be achieved even with processes that are far from realistic.
arXiv Detail & Related papers (2021-06-10T17:56:46Z) - Swapping Autoencoder for Deep Image Manipulation [94.33114146172606]
We propose the Swapping Autoencoder, a deep model designed specifically for image manipulation.
The key idea is to encode an image with two independent components and enforce that any swapped combination maps to a realistic image.
Experiments on multiple datasets show that our model produces better results and is substantially more efficient compared to recent generative models.
arXiv Detail & Related papers (2020-07-01T17:59:57Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality.
Due to challenges in obtaining real world fully-labeled image deraining datasets, existing methods are trained only on synthetically generated data.
We propose a Gaussian Process-based semi-supervised learning framework which enables the network in learning to derain using synthetic dataset.
arXiv Detail & Related papers (2020-06-10T00:33:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.