GeoT: Tensor Centric Library for Graph Neural Network via Efficient Segment Reduction on GPU
- URL: http://arxiv.org/abs/2404.03019v2
- Date: Mon, 8 Apr 2024 01:06:38 GMT
- Title: GeoT: Tensor Centric Library for Graph Neural Network via Efficient Segment Reduction on GPU
- Authors: Zhongming Yu, Genghan Zhang, Hanxian Huang, Xin Chen, Jishen Zhao,
- Abstract summary: We introduce GeoT, a cutting-edge tensor-centric library designed specifically for Graph Neural Networks (GNNs)
GeoT debuts innovative parallel algorithms that not only introduce new design principles but also expand the available design space.
GeoT marks a considerable advancement by showcasing an average operator speedup of 1.80x and an end-to-end speedup of 1.68x.
- Score: 8.15747734801831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Graph Neural Networks (GNNs) have ignited a surge of innovation, significantly enhancing the processing of geometric data structures such as graphs, point clouds, and meshes. As the domain continues to evolve, a series of frameworks and libraries are being developed to push GNN efficiency to new heights. While graph-centric libraries have achieved success in the past, the advent of efficient tensor compilers has highlighted the urgent need for tensor-centric libraries. Yet, efficient tensor-centric frameworks for GNNs remain scarce due to unique challenges and limitations encountered when implementing segment reduction in GNN contexts. We introduce GeoT, a cutting-edge tensor-centric library designed specifically for GNNs via efficient segment reduction. GeoT debuts innovative parallel algorithms that not only introduce new design principles but also expand the available design space. Importantly, GeoT is engineered for straightforward fusion within a computation graph, ensuring compatibility with contemporary tensor-centric machine learning frameworks and compilers. Setting a new performance benchmark, GeoT marks a considerable advancement by showcasing an average operator speedup of 1.80x and an end-to-end speedup of 1.68x.
Related papers
- CATGNN: Cost-Efficient and Scalable Distributed Training for Graph Neural Networks [7.321893519281194]
Existing distributed systems load the entire graph in memory for graph partitioning.
We propose CATGNN, a cost-efficient and scalable distributed GNN training system.
We also propose a novel streaming partitioning algorithm named SPRING for distributed GNN training.
arXiv Detail & Related papers (2024-04-02T20:55:39Z) - LasTGL: An Industrial Framework for Large-Scale Temporal Graph Learning [61.4707298969173]
We introduce LasTGL, an industrial framework that integrates unified and unified implementations of common temporal graph learning algorithms.
LasTGL provides comprehensive temporal graph datasets, TGNN models and utilities along with well-documented tutorials.
arXiv Detail & Related papers (2023-11-28T08:45:37Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs [21.63854538768414]
We propose TC-GNN, the first GNN framework based on GPU Core Units (TCUs)
The core idea is to reconcile the "Sparse" GNN with the high-performance "Dense" TCUs.
Rigorous experiments show an average of 1.70 speedup over the state-of-the-art DGL framework.
arXiv Detail & Related papers (2021-12-03T18:06:23Z) - BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant
Weight Matrices [9.406007544032848]
Graph Neural Networks (GNNs) are state-of-the-art algorithms for analyzing non-euclidean graph data.
How to inference GNNs in real time has become a challenging problem for some resource-limited edge-computing platforms.
We propose BlockGNN, a software- hardware co-design approach to realize efficient GNN acceleration.
arXiv Detail & Related papers (2021-04-13T14:09:22Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data.
We present the GPT-GNN framework to initialize GNNs by generative pre-training.
We show that GPT-GNN significantly outperforms state-of-the-art GNN models without pre-training by up to 9.1% across various downstream tasks.
arXiv Detail & Related papers (2020-06-27T20:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.