Elementary Analysis of Policy Gradient Methods
- URL: http://arxiv.org/abs/2404.03372v2
- Date: Thu, 11 Apr 2024 02:59:07 GMT
- Title: Elementary Analysis of Policy Gradient Methods
- Authors: Jiacai Liu, Wenye Li, Ke Wei,
- Abstract summary: This paper focuses on the discounted MDP setting and conduct a systematic study of the aforementioned policy optimization methods.
Several novel results are presented, including 1) global linear convergence of projected policy gradient for any constant step size, 2) sublinear convergence of softmax policy gradient for any constant step size, 3) global linear convergence of softmax natural policy gradient for any constant step size, 4) global linear convergence of entropy regularized softmax policy gradient for a wider range of constant step sizes than existing result, 5) tight local linear convergence rate of entropy regularized natural policy gradient, and 6) a new and concise local quadratic convergence rate of soft
- Score: 3.468656086349638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Projected policy gradient under the simplex parameterization, policy gradient and natural policy gradient under the softmax parameterization, are fundamental algorithms in reinforcement learning. There have been a flurry of recent activities in studying these algorithms from the theoretical aspect. Despite this, their convergence behavior is still not fully understood, even given the access to exact policy evaluations. In this paper, we focus on the discounted MDP setting and conduct a systematic study of the aforementioned policy optimization methods. Several novel results are presented, including 1) global linear convergence of projected policy gradient for any constant step size, 2) sublinear convergence of softmax policy gradient for any constant step size, 3) global linear convergence of softmax natural policy gradient for any constant step size, 4) global linear convergence of entropy regularized softmax policy gradient for a wider range of constant step sizes than existing result, 5) tight local linear convergence rate of entropy regularized natural policy gradient, and 6) a new and concise local quadratic convergence rate of soft policy iteration without the assumption on the stationary distribution under the optimal policy. New and elementary analysis techniques have been developed to establish these results.
Related papers
- Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Optimization Landscape of Policy Gradient Methods for Discrete-time
Static Output Feedback [22.21598324895312]
This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback control.
We derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods.
We provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when near such minima.
arXiv Detail & Related papers (2023-10-29T14:25:57Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
We investigate the sample complexities required to guarantee a predefined estimation error of the best linear coefficients for two widely-used policy evaluation algorithms.
We establish the first sample complexity bound with high-probability convergence guarantee that attains the optimal dependence on the tolerance level.
arXiv Detail & Related papers (2023-05-30T12:58:39Z) - A Policy Gradient Method for Confounded POMDPs [7.75007282943125]
We propose a policy gradient method for confounded partially observable Markov decision processes (POMDPs) with continuous state and observation spaces in the offline setting.
We first establish a novel identification result to non-parametrically estimate any history-dependent policy gradient under POMDPs using the offline data.
arXiv Detail & Related papers (2023-05-26T16:48:05Z) - Linear Convergence of Natural Policy Gradient Methods with Log-Linear
Policies [115.86431674214282]
We consider infinite-horizon discounted Markov decision processes and study the convergence rates of the natural policy gradient (NPG) and the Q-NPG methods with the log-linear policy class.
We show that both methods attain linear convergence rates and $mathcalO (1/epsilon2)$ sample complexities using a simple, non-adaptive geometrically increasing step size.
arXiv Detail & Related papers (2022-10-04T06:17:52Z) - On the Convergence Rates of Policy Gradient Methods [9.74841674275568]
We consider geometrically discounted dominance problems with finite state sub spaces.
We show that with direct gradient pararization in a sample we can analyze the general complexity of a gradient.
arXiv Detail & Related papers (2022-01-19T07:03:37Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - On Linear Convergence of Policy Gradient Methods for Finite MDPs [8.00114449574708]
We revisit the finite time analysis of policy gradient methods in the one of the simplest settings.
We show that many variants of policy gradient methods succeed with large step-sizes and attain a linear rate of convergence.
arXiv Detail & Related papers (2020-07-21T22:35:37Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms.
We develop convergence guarantees for entropy-regularized NPG methods under softmax parameterization.
Our results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
arXiv Detail & Related papers (2020-07-13T17:58:41Z) - Statistically Efficient Off-Policy Policy Gradients [80.42316902296832]
We consider the statistically efficient estimation of policy gradients from off-policy data.
We propose a meta-algorithm that achieves the lower bound without any parametric assumptions.
We establish guarantees on the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.
arXiv Detail & Related papers (2020-02-10T18:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.