Privacy-Enhancing Technologies for Artificial Intelligence-Enabled Systems
- URL: http://arxiv.org/abs/2404.03509v1
- Date: Thu, 4 Apr 2024 15:14:40 GMT
- Title: Privacy-Enhancing Technologies for Artificial Intelligence-Enabled Systems
- Authors: Liv d'Aliberti, Evan Gronberg, Joseph Kovba,
- Abstract summary: Artificial intelligence (AI) models introduce privacy vulnerabilities to systems.
These vulnerabilities exist during model development, deployment, and inference phases.
We propose the use of several privacy-enhancing technologies (PETs) to defend AI-enabled systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) models introduce privacy vulnerabilities to systems. These vulnerabilities may impact model owners or system users; they exist during model development, deployment, and inference phases, and threats can be internal or external to the system. In this paper, we investigate potential threats and propose the use of several privacy-enhancing technologies (PETs) to defend AI-enabled systems. We then provide a framework for PETs evaluation for a AI-enabled systems and discuss the impact PETs may have on system-level variables.
Related papers
- A Survey on Privacy Attacks Against Digital Twin Systems in AI-Robotics [4.304994557797013]
Industry 4.0 has witnessed the rise of complex robots fueled by the integration of Artificial Intelligence/Machine Learning (AI/ML) and Digital Twin (DT) technologies.
This paper surveys privacy attacks targeting robots enabled by AI and DT models.
arXiv Detail & Related papers (2024-06-27T00:59:20Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
With the independence from human control, cybersecurity of such systems becomes even more critical.
With the independence from human control, cybersecurity of such systems becomes even more critical.
This paper thoroughly discusses the state of the art, identifies emerging security challenges and proposes research directions.
arXiv Detail & Related papers (2023-11-05T09:17:39Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
Smart grid systems are critical to the power industry, however their sophisticated architectural design and operations expose them to a number of cybersecurity threats.
Artificial Intelligence (AI)-based technologies are becoming increasingly popular for detecting cyber assaults in a variety of computer settings.
The present AI systems are being exposed and vanquished because of the recent emergence of sophisticated adversarial systems such as Generative Adversarial Networks (GAN)
arXiv Detail & Related papers (2022-02-14T21:41:36Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
It is crucial for predictive models to be uncertainty-aware and yield trustworthy predictions.
The focus of this symposium was on AI systems to improve data quality and technical robustness and safety.
submissions from broadly defined areas also discussed approaches addressing requirements such as explainable models, human trust and ethical aspects of AI.
arXiv Detail & Related papers (2020-01-15T15:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.