Analyzing Musical Characteristics of National Anthems in Relation to Global Indices
- URL: http://arxiv.org/abs/2404.03606v1
- Date: Thu, 4 Apr 2024 17:25:31 GMT
- Title: Analyzing Musical Characteristics of National Anthems in Relation to Global Indices
- Authors: S M Rakib Hasan, Aakar Dhakal, Ms. Ayesha Siddiqua, Mohammad Mominur Rahman, Md Maidul Islam, Mohammed Arfat Raihan Chowdhury, S M Masfequier Rahman Swapno, SM Nuruzzaman Nobel,
- Abstract summary: We analyze national anthem musical data to determine whether certain musical characteristics are associated with peace, happiness, suicide rate, crime rate, etc.
Our findings indicate that there may be a correlation between the musical characteristics of national anthems and the indices we investigated.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Music plays a huge part in shaping peoples' psychology and behavioral patterns. This paper investigates the connection between national anthems and different global indices with computational music analysis and statistical correlation analysis. We analyze national anthem musical data to determine whether certain musical characteristics are associated with peace, happiness, suicide rate, crime rate, etc. To achieve this, we collect national anthems from 169 countries and use computational music analysis techniques to extract pitch, tempo, beat, and other pertinent audio features. We then compare these musical characteristics with data on different global indices to ascertain whether a significant correlation exists. Our findings indicate that there may be a correlation between the musical characteristics of national anthems and the indices we investigated. The implications of our findings for music psychology and policymakers interested in promoting social well-being are discussed. This paper emphasizes the potential of musical data analysis in social research and offers a novel perspective on the relationship between music and social indices. The source code and data are made open-access for reproducibility and future research endeavors. It can be accessed at http://bit.ly/na_code.
Related papers
- A Survey of Foundation Models for Music Understanding [60.83532699497597]
This work is one of the early reviews of the intersection of AI techniques and music understanding.
We investigated, analyzed, and tested recent large-scale music foundation models in respect of their music comprehension abilities.
arXiv Detail & Related papers (2024-09-15T03:34:14Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
We are inspired by how musicians compose music not just from a movie script, but also through visualizations.
We propose MeLFusion, a model that can effectively use cues from a textual description and the corresponding image to synthesize music.
Our exhaustive experimental evaluation suggests that adding visual information to the music synthesis pipeline significantly improves the quality of generated music.
arXiv Detail & Related papers (2024-06-07T06:38:59Z) - A Dataset and Baselines for Measuring and Predicting the Music Piece Memorability [16.18336216092687]
We focus on measuring and predicting music memorability.
We train baselines to predict and analyze music memorability.
We demonstrate that while there is room for improvement, predicting music memorability with limited data is possible.
arXiv Detail & Related papers (2024-05-21T14:57:04Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
We explore the application of Large Language Models (LLMs) to the pre-training of music.
To address the challenges associated with misaligned measures from different tracks during generation, we propose a Synchronized Multi-Track ABC Notation (SMT-ABC Notation)
Our contributions include a series of models capable of handling up to 8192 tokens, covering 90% of the symbolic music data in our training set.
arXiv Detail & Related papers (2024-04-09T15:35:52Z) - Exploring the Emotional Landscape of Music: An Analysis of Valence
Trends and Genre Variations in Spotify Music Data [0.0]
This paper conducts an intricate analysis of musical emotions and trends using Spotify music data.
Employing regression modeling, temporal analysis, mood transitions, and genre investigation, the study uncovers patterns within music-emotion relationships.
arXiv Detail & Related papers (2023-10-29T15:57:31Z) - Knowledge-based Multimodal Music Similarity [0.0]
This research focuses on the study of musical similarity using both symbolic and audio content.
The aim of this research is to develop a fully explainable and interpretable system that can provide end-users with more control and understanding of music similarity and classification systems.
arXiv Detail & Related papers (2023-06-21T13:12:12Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
This paper presents a dataset for Greek Traditional and Folk music that includes 1570 pieces, summing in around 80 hours of data.
The dataset incorporates YouTube timestamped links for retrieving audio and video, along with rich metadata information with regards to instrumentation, geography and genre.
arXiv Detail & Related papers (2022-11-21T14:15:43Z) - Affective Idiosyncratic Responses to Music [63.969810774018775]
We develop methods to measure affective responses to music from over 403M listener comments on a Chinese social music platform.
We test for musical, lyrical, contextual, demographic, and mental health effects that drive listener affective responses.
arXiv Detail & Related papers (2022-10-17T19:57:46Z) - Modelling Moral Traits with Music Listening Preferences and Demographics [2.3204178451683264]
We explore the association between music genre preferences, demographics and moral values by exploring self-reported data from an online survey administered in Canada.
Our results show the importance of music in predicting a person's moral values (.55-.69 AUROC); while knowledge of basic demographic features such as age and gender is enough to increase the performance.
arXiv Detail & Related papers (2021-07-01T10:26:29Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
This thesis combines audio-analysis with computer vision to approach Music Information Retrieval (MIR) tasks from a multi-modal perspective.
The main hypothesis of this work is based on the observation that certain expressive categories such as genre or theme can be recognized on the basis of the visual content alone.
The experiments are conducted for three MIR tasks Artist Identification, Music Genre Classification and Cross-Genre Classification.
arXiv Detail & Related papers (2020-02-01T17:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.