LCM-Lookahead for Encoder-based Text-to-Image Personalization
- URL: http://arxiv.org/abs/2404.03620v1
- Date: Thu, 4 Apr 2024 17:43:06 GMT
- Title: LCM-Lookahead for Encoder-based Text-to-Image Personalization
- Authors: Rinon Gal, Or Lichter, Elad Richardson, Or Patashnik, Amit H. Bermano, Gal Chechik, Daniel Cohen-Or,
- Abstract summary: We explore the potential of using shortcut-mechanisms to guide the personalization of text-to-image models.
We focus on encoder-based personalization approaches, and demonstrate that by tuning them with a lookahead identity loss, we can achieve higher identity fidelity.
- Score: 82.56471486184252
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in diffusion models have introduced fast sampling methods that can effectively produce high-quality images in just one or a few denoising steps. Interestingly, when these are distilled from existing diffusion models, they often maintain alignment with the original model, retaining similar outputs for similar prompts and seeds. These properties present opportunities to leverage fast sampling methods as a shortcut-mechanism, using them to create a preview of denoised outputs through which we can backpropagate image-space losses. In this work, we explore the potential of using such shortcut-mechanisms to guide the personalization of text-to-image models to specific facial identities. We focus on encoder-based personalization approaches, and demonstrate that by tuning them with a lookahead identity loss, we can achieve higher identity fidelity, without sacrificing layout diversity or prompt alignment. We further explore the use of attention sharing mechanisms and consistent data generation for the task of personalization, and find that encoder training can benefit from both.
Related papers
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
New personalization techniques have been proposed to customize the pre-trained base models for crafting images with specific themes or styles.
Such a lightweight solution poses a new concern regarding whether the personalized models are trained from unauthorized data.
We introduce SIREN, a novel methodology to proactively trace unauthorized data usage in black-box personalized text-to-image diffusion models.
arXiv Detail & Related papers (2024-10-14T12:29:23Z) - Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis [7.099258248662009]
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence.
However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image.
We leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process.
arXiv Detail & Related papers (2024-09-27T19:31:04Z) - FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
We offer a novel approach to image composition, which integrates multiple input images into a single, coherent image.
We showcase the potential of utilizing the powerful generative prior inherent in large-scale pre-trained diffusion models to accomplish generic image composition.
arXiv Detail & Related papers (2024-07-06T03:35:43Z) - RefDrop: Controllable Consistency in Image or Video Generation via Reference Feature Guidance [22.326405355520176]
RefDrop allows users to control the influence of reference context in a direct and precise manner.
Our method also enables more interesting applications, such as the consistent generation of multiple subjects.
arXiv Detail & Related papers (2024-05-27T21:23:20Z) - Enhancing Consistency-Based Image Generation via Adversarialy-Trained Classification and Energy-Based Discrimination [13.238373528922194]
We propose a novel technique for post-processing Consistency-based generated images, enhancing their perceptual quality.
Our approach utilizes a joint classifier-discriminator model, in which both portions are trained adversarially.
By employing example-specific projected gradient under the guidance of this joint machine, we refine synthesized images and achieve an improved FID scores on the ImageNet 64x64 dataset.
arXiv Detail & Related papers (2024-05-25T14:53:52Z) - Attribute-Aware Deep Hashing with Self-Consistency for Large-Scale
Fine-Grained Image Retrieval [65.43522019468976]
We propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes.
We develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors.
Our models are equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities.
arXiv Detail & Related papers (2023-11-21T08:20:38Z) - Domain-Agnostic Tuning-Encoder for Fast Personalization of Text-To-Image
Models [59.094601993993535]
Text-to-image (T2I) personalization allows users to combine their own visual concepts in natural language prompts.
Most existing encoders are limited to a single-class domain, which hinders their ability to handle diverse concepts.
We propose a domain-agnostic method that does not require any specialized dataset or prior information about the personalized concepts.
arXiv Detail & Related papers (2023-07-13T17:46:42Z) - Identity Encoder for Personalized Diffusion [57.1198884486401]
We propose an encoder-based approach for personalization.
We learn an identity encoder which can extract an identity representation from a set of reference images of a subject.
We show that our approach consistently outperforms existing fine-tuning based approach in both image generation and reconstruction.
arXiv Detail & Related papers (2023-04-14T23:32:24Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.