PrivShape: Extracting Shapes in Time Series under User-Level Local Differential Privacy
- URL: http://arxiv.org/abs/2404.03873v1
- Date: Fri, 5 Apr 2024 03:22:47 GMT
- Title: PrivShape: Extracting Shapes in Time Series under User-Level Local Differential Privacy
- Authors: Yulian Mao, Qingqing Ye, Haibo Hu, Qi Wang, Kai Huang,
- Abstract summary: Local differential privacy (LDP) has emerged as the state-of-the-art approach to protecting data privacy.
We propose PrivShape, a trie-based mechanism under user-level LDP to protect all elements.
By extensive experiments on real-world datasets, we demonstrate that PrivShape outperforms PatternLDP when adapted for offline use.
- Score: 14.408776376918484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series have numerous applications in finance, healthcare, IoT, and smart city. In many of these applications, time series typically contain personal data, so privacy infringement may occur if they are released directly to the public. Recently, local differential privacy (LDP) has emerged as the state-of-the-art approach to protecting data privacy. However, existing works on LDP-based collections cannot preserve the shape of time series. A recent work, PatternLDP, attempts to address this problem, but it can only protect a finite group of elements in a time series due to {\omega}-event level privacy guarantee. In this paper, we propose PrivShape, a trie-based mechanism under user-level LDP to protect all elements. PrivShape first transforms a time series to reduce its length, and then adopts trie-expansion and two-level refinement to improve utility. By extensive experiments on real-world datasets, we demonstrate that PrivShape outperforms PatternLDP when adapted for offline use, and can effectively extract frequent shapes.
Related papers
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
Local Differential Privacy (LDP) offers strong privacy guarantees without requiring users to trust external parties.
We propose a Bayesian framework, Bayesian Coordinate Differential Privacy (BCDP), that enables feature-specific privacy quantification.
arXiv Detail & Related papers (2024-10-24T03:39:55Z) - A Framework for Differential Privacy Against Timing Attacks [0.0]
We establish a general framework for ensuring differential privacy in the presence of timing side channels.
We define a new notion of timing privacy, which captures programs that remain differentially private to an adversary.
We show how our framework can be realized in code through a natural extension of the OpenDP Programming Framework.
arXiv Detail & Related papers (2024-09-09T13:56:04Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Differentially Private Synthetic Data via Foundation Model APIs 2: Text [56.13240830670327]
A lot of high-quality text data generated in the real world is private and cannot be shared or used freely due to privacy concerns.
We propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text.
Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines.
arXiv Detail & Related papers (2024-03-04T05:57:50Z) - DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer [57.04801796205638]
Large Language Models (LLMs) have emerged as dominant tools for various tasks.
However, concerns surrounding data privacy present obstacles due to the tuned prompts' dependency on sensitive private information.
We present Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge.
arXiv Detail & Related papers (2023-11-27T02:01:10Z) - PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models [42.20437015301152]
We present PrivLM-Bench, a benchmark for evaluating the privacy leakage of language models (LMs)
Instead of only reporting DP parameters, PrivLM-Bench sheds light on the neglected inference data privacy during actual usage.
We conduct extensive experiments on three datasets of GLUE for mainstream LMs.
arXiv Detail & Related papers (2023-11-07T14:55:52Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
We study the contextual linear bandit problem with differential privacy (DP)
We show that it is possible to achieve a privacy/utility trade-off between JDP and LDP by leveraging the shuffle model of privacy.
Our result shows that it is possible to obtain a tradeoff between JDP and LDP by leveraging the shuffle model while preserving local privacy.
arXiv Detail & Related papers (2021-12-11T15:23:28Z) - Generalized Linear Bandits with Local Differential Privacy [4.922800530841394]
Many applications such as personalized medicine and online advertising require the utilization of individual-specific information for effective learning.
This motivates the introduction of local differential privacy (LDP), a stringent notion in privacy, to contextual bandits.
In this paper, we design LDP algorithms for generalized linear bandits to achieve the same regret bound as in non-privacy settings.
arXiv Detail & Related papers (2021-06-07T06:42:00Z) - Local Differential Privacy for Regret Minimization in Reinforcement
Learning [33.679678503441565]
We study privacy in the context of finite-horizon Markov Decision Processes (MDPs)
We formulate this notion of privacy for RL by leveraging the local differential privacy (LDP) framework.
We present an optimistic algorithm that simultaneously satisfies $varepsilon$-LDP requirements.
arXiv Detail & Related papers (2020-10-15T14:13:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.